Have a personal or library account? Click to login
Influence of Preconditioning and Blocking on Accuracy in Solving Markovian Models Cover

Influence of Preconditioning and Blocking on Accuracy in Solving Markovian Models

Open Access
|Jul 2009

References

  1. Benzi, M. and Ucar, B. (2007). Block triangular preconditioners for M-matrices and Markov chains, Electronic Transactions on Numerical Analysis 26(1): 209-227.
  2. Bylina, B. and Bylina, J. (2004). Solving Markov chains with the WZ factorization for modelling networks, Proceedings of the 3rd International Conference Aplimat 2004, Bratislava, Slovakia, pp. 307-312.
  3. Bylina, B. and Bylina, J. (2007). Linking of direct and iterative methods in Markovian models solving, Proceedings of the International Multiconference on Computer Science and Information Technology, Wisła, Poland, Vol. 2, pp. 467-477.
  4. Bylina, B. and Bylina, J. (2008). Incomplete WZ decomposition algorithm for solving Markov chains, Journal of Applied Mathematics 1(2): 147-156.
  5. Bylina, J. (2003). Distributed solving of Markov chains for computer network models, Annales UMCS Informatica 1(1): 15-20.
  6. Campbell, S. L. and Meyer, C. D. (1979). Generalized Inverses of Linear Transformations, Pitman Publishing Ltd., London.
  7. Chawla, M. and Khazal, R. (2003). A new WZ factorization for parallel solution of tridiagonal systems, International Journal of Computer Mathematics 80(1): 123-131.10.1080/00207160304664
  8. Duff, I. S. (2004). Combining direct and iterative methods for the solution of large systems in different application areas, Technical Report RAL-TR-2004-033, Rutherford Appleton Laboratory, Chilton.
  9. Evans, D. J. and Barulli, M. (1998). BSP linear solver for dense matrices, Parallel Computing 24(5-6): 777-795.10.1016/S0167-8191(98)00014-3
  10. Evans, D. J. and Hatzopoulos, M. (1979). The parallel solution of linear system, International Journal of Computer Mathematics 7(3): 227-238.10.1080/00207167908803174
  11. Funderlic, R. E. and Meyer, C. D. (1986). Sensitivity of the stationary distrbution vector for an ergodic Markov chain, Linear Algebra and Its Applications 76(1): 1-17.10.1016/0024-3795(86)90210-7
  12. Funderlic, R. E. and Plemmons, R. J. (1986). Updating LU factorizations for computing stationary distributions, SIAM Journal on Algebraic and Discrete Methods 7(1): 30-42.10.1137/0607004
  13. Golub, G. H. and Meyer, C. D. (1986). Using the QR factorization and group inversion to compute, differentiate and estimate the sensitivity of stationary distributions for Markov chains, SIAM Journal on Algebraic and Discrete Methods 7(2): 273-281.10.1137/0607031
  14. Harrod, W. J. and Plemmons, R. J. (1984). Comparisons of some direct methods for computing stationary distributions of Markov chains, SIAM Journal on Scientific and Statistical Computing 5(2): 453-469.10.1137/0905033
  15. Haviv, M. (1987). Aggregation/disagregation methods for computing the stationary distribution of a Markov chain, SIAM Journal on Numerical Analysis 24(4): 952-966.10.1137/0724062
  16. Jennings, A. and Stewart, W. J. (1975). Simultaneous iteration for partial eigensolution of real matrices, Journal of the Institute of Mathematics and Its Applications 15(3): 351-361.10.1093/imamat/15.3.351
  17. Pollett, P. K. and Stewart, D. E. (1994). An efficient procedure for computing quasi-stationary distributions of Markov chains with sparse transition structure, Advances in Applied Probability 26(1): 68-79.10.2307/1427580
  18. Rao, S. C. S. and Sarita (2008). Parallel solution of large symmetric tridiagonal linear systems, Parallel Computing 34(3): 177-197.10.1016/j.parco.2008.02.001
  19. Ridler-Rowe, C. J. (1967). On a stochastic model of an epidemic, Advances in Applied Probability 4(1): 19-33.10.2307/3212297
  20. Saad, Y. and Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM Journal of Scientific and Statistical Computing 7(3): 856-869.10.1137/0907058
  21. Schweitzer, P. J. and Kindle, K. W. (1986). An iterative aggregation-disaggregation algorithm for solving linear systems, Applied Mathematics and Computation 18(4): 313-353.10.1016/0096-3003(86)90003-2
  22. Stewart, W. (1994). Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Chichester.10.1515/9780691223384
  23. Stewart, W. J. and Jennings, A. (1981). A simultaneous iteration algorithm for real matrices, ACM Transactions on Mathematical Software 7(2): 184-198.10.1145/355945.355948
  24. Yalamov, P. and Evans, D. J. (1995). The WZ matrix factorization method, Parallel Computing 21(7): 1111-1120.10.1016/0167-8191(94)00088-R
DOI: https://doi.org/10.2478/v10006-009-0017-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 207 - 217
Published on: Jul 8, 2009
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Beata Bylina, Jarosław Bylina, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 2 (June 2009)