Have a personal or library account? Click to login
Effective Dual-Mode Fuzzy DMC Algorithms with On-Line Quadratic Optimization and Guaranteed Stability Cover

Effective Dual-Mode Fuzzy DMC Algorithms with On-Line Quadratic Optimization and Guaranteed Stability

Open Access
|Apr 2009

References

  1. Blevins, T., McMillan, G., Wojsznis, W. and Brown, M. (2003). Advanced Control Unleashed, ISA—The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC.
  2. Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer-Verlag, London.10.1007/978-1-4471-3398-8
  3. Cao, S., Rees, N. and Feng, G. (1997). Analysis and design for a class of complex control systems. Part I: Fuzzy modelling and identification, Automatica 33(6): 1017-1028.
  4. Chen, J., Xi, Y. and Zhang, Z. (1998). A clustering algorithm for fuzzy model identification, Fuzzy Sets and Systems 98(3): 319-329.10.1016/S0165-0114(96)00384-3
  5. Cutler, C. and Ramaker, B. (1980). Dynamic matrix control—A computer control algorithm, Proceedings of the Joint Automatic Control Conference, San Francisco, CA, USA, paper no. WP5-B.
  6. Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993). An Introduction to Fuzzy Control, Springer-Verlag, Berlin.10.1007/978-3-662-11131-4
  7. Garcia, C. (1984). Quadratic dynamic matrix control of nonlinear processes: An application to a batch reaction process, Proceedings of the AIChE Annual Meeting, San Francisco, CA, USA, paper no. 82f.
  8. Garcia, C. and Morshedi, A. (1986). Quadratic programming solution of dynamic matrix control (QDMC), Chemical Engineering Communications 46(1-3): 73-87.10.1080/00986448608911397
  9. Gattu, G. and Zafiriou, E. (1992). Nonlinear quadratic dynamic matrix control with state estimation, Industrial and Engineering Chemistry Research 31(4): 1096-1104.10.1021/ie00004a018
  10. Lee, J. and Ricker, N. (1994). Extended Kalman filter based nonlinear model predictive control, Industrial and Engineering Chemistry Research 33(6): 1530-1541.10.1021/ie00030a013
  11. Li, W. and Biegler, L. (1989). Multistep, Newton-type control strategies for constrained, nonlinear processes, Chemical Engineering Research and Design 67(Nov.): 562-577.
  12. Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
  13. Marusak, P. (2002). Predictive control of nonlinear plants using dynamic matrix and fuzzy modeling, Ph. D. thesis, Warsaw University of Technology, Warsaw, (in Polish).
  14. Marusak, P. and Tatjewski, P. (2000). Fuzzy dynamic matrix control algorithms for nonlinear plants, Proceedings of the 6-th International Conference on Methods and Models in Automation and Robotics MMAR 2000, Międzyzdroje, Poland, pp. 749-754.
  15. Marusak, P. and Tatjewski, P. (2001). Stability analysis of nonlinear control systems with fuzzy DMC controllers, Proceedings of the IFAC Workshop on Advanced Fuzzy and Neural Control, AFNC'01, Valencia, Spain, pp. 21-26.
  16. Marusak, P. and Tatjewski, P. (2002). Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers, Archives of Control Sciences 12(3): 267-288.
  17. Marusak, P. and Tatjewski, P. (2003). Stable, effective fuzzy DMC algorithms with on-line quadratic optimization, Proceedings of the American Control Conference, ACC 2003, Denver, CO, USA, pp. 3513-3518.
  18. Mayne, D., Rawlings, J., Rao, C. and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality, Automatica 36(6): 789-814.10.1016/S0005-1098(99)00214-9
  19. Michalska, H. and Mayne, D. (1993). Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control 38(11): 1623-1632.10.1109/9.262032
  20. Morari, M. and Lee, J. (1999). Model predictive control: Past, present and future, Computers and Chemical Engineering 23(4): 667-682.10.1016/S0098-1354(98)00301-9
  21. Mutha, R., Cluett, W. and Penlidis, A. (1997). Nonlinear model-based predictive control of control nonaffine systems, Automatica 33(5): 907-913.10.1016/S0005-1098(96)00220-8
  22. Mutha, R., Cluett, W. and Penlidis, A. (1998). Modifying the prediction equation for nonlinear model-based predictive control, Automatica 34(10): 1283-1287.10.1016/S0005-1098(98)00082-X
  23. Piegat, A. (2001). Fuzzy Modeling and Control, Physica-Verlag, Berlin.10.1007/978-3-7908-1824-6
  24. Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.
  25. Scokaert, P., Mayne, D. and Rawlings, J. (1999). Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control 44(3): 648-654.10.1109/9.751369
  26. Setnes, M. and Roubos, H. (2000). GA-fuzzy modeling and classification: Complexity and performance, IEEE Transactions on Fuzzy Systems 8(5): 509-522.10.1109/91.873575
  27. Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116-132.10.1109/TSMC.1985.6313399
  28. Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135-156.10.1016/0165-0114(92)90113-I
  29. Tatjewski, P. (2007). Advanced Control of Industrial Processes; Structures and Algorithms, Springer-Verlag, London.
  30. Yager, R. and Filev, D. (1994). Essentials of Fuzzy Modeling and Control, Wiley, New York, NY.
DOI: https://doi.org/10.2478/v10006-009-0012-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 127 - 142
Published on: Apr 2, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Piotr Marusak, Piotr Tatjewski, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 1 (March 2009)