Have a personal or library account? Click to login
Reachability of Cone Fractional Continuous-Time Linear Systems Cover
Open Access
|Apr 2009

References

  1. Engheta, N. (1997). On the role of fractional calculus in electromagnetic theory, IEEE Transactions on Antennas and Propagation 39(4): 35-46.10.1109/74.632994
  2. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.10.1002/9781118033029
  3. Ferreira, N.M.F. and Machado, J.A.T. (2003). Fractional-order hybrid control of robotic manipulators, Proceedings of the 11-th International Conference on Advanced Robotics, ICAR'2003, Coimbra, Portugal, pp. 393-398.
  4. Gałkowski, K. (2005). Fractional polynomials and nD systems. Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS'2005, Kobe, Japan, CD-ROM.10.1109/ISCAS.2005.1465018
  5. Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.10.1007/978-1-4471-0221-2
  6. Kaczorek, T. (2006). Computation of realizations of discretetime cone systems, Bulletin of the Polish Academy of Sciences 54(3): 347-350.
  7. Kaczorek, T. (2007a). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, JESA Journal, 2007, (submitted).10.23919/ECC.2007.7068247
  8. Kaczorek, T. (2007b). Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control 6(4): 139-143.10.23919/ECC.2007.7068247
  9. Kaczorek, T. (2007c). Cone-realizations for multivariable continuous-me systems with delays, Advances in Systems Science and Applications 8(1): 25-34.
  10. Kaczorek, T. (2007d). Reachability and controllability to zero of cone fractional linear systems, Archives of Control Sciences 17(3): 357-367.10.23919/ECC.2007.7068247
  11. Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2):223-228.10.2478/v10006-008-0020-0
  12. Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
  13. Nishimoto, K. (1984). Fractional Calculus, Decartess Press, Koriama.
  14. Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
  15. Ortigueira, M.D. (1997). Fractional discrete-time linear systems, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing 97, Munich, Germany, pp. 2241-2244.
  16. Ostalczyk, P. (2000). The non-integer difference of the discretetime function and its application to the control system synthesis, International Journal of Systems Science 31(12): 1551-1561.10.1080/00207720050217322
  17. Ostalczyk, P. (2004). Fractional-order backward difference equivalent forms. Part I—Horner's form, Proceedings of the 1-st IFAC Workshop on Fractional Differentation and Its Applications, FDA'04, Enseirb, Bordeaux, France, pp. 342-347.
  18. Ostalczyk, P. (2004). Fractional-order backward difference equivalent forms. Part II—Polynomial form, Proceedings of the 1-st IFAC Workshop on Fractional Differentation and Its Applications, FDA'04, Enseirb, Bordeaux, France, pp. 348-353.
  19. Oustaloup, A. (1993). Commande CRONE, Hermès, Paris.
  20. Oustaloup, A. (1995). La dèrivation non entière. Hermès, Paris.
  21. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  22. Podlubny, I., Dorcak, L. and Kostial, I. (1997). On fractional derivatives, fractional order systems and PIλDμ- controllers, Proceedings of the 36-th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 4985-4990.
  23. Reyes-Melo, M.E., Martinez-Vega, J.J., Guerrero-Salazar C.A. and Ortiz-Mendez, U. (2004). Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order, Journal of Optoelectronics and Advanced Materials 6(3): 1037-1043.
  24. Riu, D., Retiére, N. and Ivanes, M. (2001). Turbine generator modeling by non-integer order systems, Proceedings of the IEEE International Conference on Electric Machines and Drives Conference, IEMDC 2001, Cambridge, MA, USA, pp. 185-187.
  25. Samko, S.G., Kilbas, A.A. and Martichew, O.I. (1993). Fractional Integrals and Derivative. Theory and Applications, Gordon & Breac, London.
  26. Sierociuk, D. and Dzieliński, D. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140.
  27. Sjöberg, M. and Kari, L. (2002). Non-linear behavior of a rubber isolator system using fractional derivatives, Vehicle System Dynamics 37(3): 217-236.10.1076/vesd.37.3.217.3532
  28. Vinagre, B.M., Monje, C.A. and Calderon, A.J. (2002). Fractional order systems and fractional order control actions, Lecture 3 IEEE CDC'02 TW#2: Fractional Calculus Applications in Automatic Control and Robotics.
  29. Vinagre, B.M. and Feliu, V. (2002). Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures, Proceedings of the 41-st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 214-239.
  30. Zaborowsky, V. and Meylaov, R. (2001). Informational network traffic model based on fractional calculus, Proceedings of International Conference on Info-tech and Info-net, ICII 2001, Beijing, China, Vol. 1, pp. 58-63.
DOI: https://doi.org/10.2478/v10006-009-0008-4 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 89 - 94
Published on: Apr 2, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Tadeusz Kaczorek, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 1 (March 2009)