Have a personal or library account? Click to login
Local Detection Of Defects From Image Sequences Cover

References

  1. Adler J. R. (1981). The Geometry of Random Fields, Wiley, Chichester.
  2. Barnsley M. (1988). Fractals Everywhere, Academic Press, New York, NY.
  3. Benassi A., Cohen S., Istas J. (2002). Identification and properties of real harmonizable fractional levy motions, Bernoulli 8(1): 97-115.
  4. Benassi A., Cohen S., Istas J. (2003). Local self-similarity and Hausdorff dimension, Comptes Rendus Mathematique 336(3): 267-272.10.1016/S1631-073X(03)00015-3
  5. Chan G., Hall P. and Poskitt D. S. (1995). Periodogram-based estimators of fractal properties, Annals of Statistics 23 (5): 1684-1711.10.1214/aos/1176324319
  6. Conci A., Proenca C. B. (1998). A fractal image analysis system for fabric inspection based on a box-counting method. Computer Networks and ISDN Systems 30(20-21): 1887-1895.
  7. Constantine A. G. and Hall P. (1994). Characterizing surface smoothness via estimation of effective fractal dimension, Journal of the Royal Statistical Society: Series B 56 (1): 97-113.10.1111/j.2517-6161.1994.tb01963.x
  8. Davies E. R. (2005). Machine Vision: Theory, Algorithms, Practicalities, 3rd Edn., Academic Press, San Francisco, CA.
  9. Davies E. R. (2008). A generalised approach to the use of sampling for rapid object location, International Journal of Applied Mathematics of Computer Science 18(1): 7-19.10.2478/v10006-008-0001-3
  10. Davies S. and Hall P. (1999). Fractal analysis of surface roughness by using spatial data, Journal of the Royal Statistical Society: Series B 61 (1): 3-37.10.1111/1467-9868.00160
  11. Dworkin S. B. and Nye T. J. (2006). Image processing for machine vision measurement of hot formed parts, Journal of Materials Processing Technology 174 (1-3): 1-6.10.1016/j.jmatprotec.2004.10.019
  12. Falconer K. (1990). Fractal Geometry, Wiley, New York, NY.
  13. Gonzalez R. C. and Wintz P. (1977). Digital Image Processing, Addison-Wesley, Reading, MA.
  14. Hu M. K. (1962) Visual pattern recognition by moment invariants, IEEE Transactions on Information Theory 6(2): 179-187.10.1109/TIT.1962.1057692
  15. Kent J. T. and Wood A. T. (1997), Estimating the fractal dimension of a locally self-similar Gaussian process by using increments, Journal of the Royal Statistical Society: Series B 59 (3): 679-699.
  16. Istas J. and Lang G. (1997). Quadratic variations and estimation of the local Hölder index of a Gaussian process, Annales de I'Institut Henri Poincare (B) Probability and Statistics 33 (4): 407-436.10.1016/S0246-0203(97)80099-4
  17. Jähne B. (2002). Digital Image Processing, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-662-04781-1
  18. Gill J. Y. and Werman M. (1993). Computing 2-D min, median and max filters, IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5): 504-507.10.1109/34.211471
  19. O'Leary P. (2005). Machine vision for feedback control in a steel rolling mill, Computers in Industry 56(8-9): 997-1004.10.1016/j.compind.2005.05.023
  20. Malamas E. N., Petrakis E. G. M., Zervakis M., Petit L. and Legat J-D. (2003). A survey on industrial vision systems, applications and tools, Image and Vision Computing 21(2): 171-188.10.1016/S0262-8856(02)00152-X
  21. Ott E. (1993). Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
  22. Pratt P. K. (2001). Digital Image Processing, 3rd Edn., Wiley, New York, NY.
  23. Rafajłowicz E. (2008). Testing homogeneity of coefficients in distributed systems with application to quality monitoring, IEEE Transactions on Control Systems Technology 16(2): 314-321.10.1109/TCST.2007.903398
  24. Rafajłowicz E. (2004) Testing (non-)existence of input-output relationships by estimating fractal dimensions, IEEE Transactions Signal Processing 52(11): 3151-3159.10.1109/TSP.2004.836454
  25. Rosenfeld A. and Kak A. C. (1982). Digital Picture Processing, Academic Press, Inc., Orlando, FL.
  26. Schuster H. G. (1988). Deterministic Chaos, VGH Verlagsgesellschaft, Weinheim.
  27. Skubalska-Rafajłowicz E. (2005). A new method of estimation of the box-counting dimension of multivariate objects using space-filling curves, Nonlinear Analysis 63 (5-7): 1281-1287.10.1016/j.na.2005.02.011
  28. Skubalska-Rafajłowicz E. (2008). Local correlation and entropy maps as tools for detecting defects in industrial images, International Journal of Applied Mathematics and Computer Science 18(1): 41-47.10.2478/v10006-008-0004-0
  29. Tricot C. (1995). Curves and Fractal Dimension, Springer, New York, NY.10.1007/978-1-4612-4170-6
  30. Tsai D.-M., Lin C.-T., Chen J.-F. (2003). The evaluation of normalized cross correlations for defect detection, Pattern Recognition Letters 24 (15): 2525-2535.10.1016/S0167-8655(03)00098-9
  31. Wnuk M. (2008). Remarks on hardware implementation of image processing algorithms, International Journal of Applied Mathematics and Computer Science 18(1): 105-110.10.2478/v10006-008-0010-2
  32. Van Herk M. (1992). A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels, Pattern Recognition Letters 13(7): 517-521.10.1016/0167-8655(92)90069-C
  33. Vincent L. (1993). Grayscale area openings and closings, their efficient implementation and applications, Proceedings of the EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, pp. 22-27.
DOI: https://doi.org/10.2478/v10006-008-0051-6 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 581 - 592
Published on: Dec 30, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Ewaryst Rafajłowicz, Marek Wnuk, Wojciech Rafajłowicz, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 4 (December 2008)