Have a personal or library account? Click to login
An Automatic Hybrid Method for Retinal Blood Vessel Extraction Cover
By: Yong Yang,  Shuying Huang and  Nini Rao  
Open Access
|Oct 2008

References

  1. Ayala G., Leon T. and Zapater V. (2005). Different averages of a fuzzy set with an application to vessel segmentation, IEEE Transactions on Fuzzy Systems13(3): 384-393.10.1109/TFUZZ.2004.839667
  2. Bezdek J. C.(1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, NY.10.1007/978-1-4757-0450-1
  3. Can A., Shen H., Turner J. N., Tanenbaum H. L., and Roysam D. B. (1999). Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine3(2): 125-138.
  4. Chanwimaluang T. and Fan G. (2003). An efficient blood vessel detection algorithm for retinal images using local entropy thresholding, Proceedings of IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 5, pp. 21-24.
  5. Chaudhuri S., Chatterjee S., Katz N., Nelson M. and Goldbaum M. (1989). Detection of blood vessels in retinal images using two-dimensional matched filters, IEEE Transactions on Medical Imaging8(3): 263-269.10.1109/42.3471518230524
  6. Chutatape O., Zheng L. and Krishnan S. M. (1998). Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters, Proceedings of the IEEE Conference on Engineering in Medicine and Biology, Hong Kong, China, Vol. 6, pp. 3144-3149.
  7. Chutatape O., Zheng L. and Krishnan S. M. (1998). Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters, Proceedings of the IEEE Conference on Engineering in Medicine and Biology, Hong Kong, China, Vol. 6, pp. 3144-3149.
  8. Cote B., Hart W., Goldbaum M., Kube P. and Nelson M. (1994). Classification of blood vessels in ocular fundus images, Technical report, University of California, San Diego, CA.
  9. Dunn J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters, Journal of Cybernetics3(3): 32-57.10.1080/01969727308546046
  10. EI-Khamy S. E., Ghaleb I. and EI-Yamany N. A. (2002). Fuzzy edge detection with minimum fuzzy entropy criterion, Proceedings of the Mediterranean Electrotechnical Conference, Cairo, Egypt, 1: 498-503.
  11. Gao X. H., Bharath A., Stanton A., Hughes A., Chapman N. and Thom S. (2001). A method of vessel tracking for vessel diameter measurement on retinal images, Proceedings of IEEE International Conference on Image Processing, Thessaloniki, Greece, Vol. 2, pp. 881-884.
  12. Hoover A., Kouznetsova V. and Goldbaum M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, 19(3): 203-210.10.1109/42.84517810875704
  13. Jorge J. G. L., Joao V. B. S., Roberto M. C. J. and Herbert F. J. (2003). Blood vessels segmentation in non-mydriatic images using wavelets and statistical classifiers, Proceedings of Brazilian Symposium on Computer Graphics and Image Processing, Sao Carlos, Brazil, 1: pp. 262-269.
  14. Kochner B., Schulmann D., Michaelis M., Mann G. and Englemeier K. H. (1998). Course tracking and contour extraction of retinal vessels from colour fundus photographs: Most efficient use of steerable filters for model based image analysis, SPIE Proceedings of Medical Imaging3328(2): 755-761.10.1117/12.310955
  15. Otsu N. (1979). A threshold selection method from gray level histogram, IEEE Transactions on Systems, Man, and Cybernetics9(1): 62-66.10.1109/TSMC.1979.4310076
  16. Rawi M. A., Qutaishat M. and Arrar M. (2007). An improved matched filter for blood vessel detection of digital retinal images, Computers in Biology and Medicine37(2): 262-267.10.1016/j.compbiomed.2006.03.00316697363
  17. Riveron E. F. and Guimeras N. G. (2006). Extraction of blood vessels in ophthalmic color images of human retinas, Lecture Notes in Computer Science, 4225: 118-126.10.1007/11892755_12
  18. Serra J. and Soille P. (1994). Mathematical Morphology and Its Applications to Image Processing, Kluwer Academic Publishers, Boston, MA.10.1007/978-94-011-1040-2
  19. Sinthanayothin C., Boyee J. F., Williamson T. H., Cook H. L., Mensah E., Lal S. and Usher D. (2002). Automatic detection of diabetic retinopathy on digital fundus images, Diabetic Medicine19(2): 105-112.10.1046/j.1464-5491.2002.00613.x
  20. Staal J., AbramoffM. D., NiemeijerM., Viergever M. A. and Ginneken B. V. (2004). Ridge-based vessel segmentation in color images of the retina, IEEE Transactions on Medical Imaging23(4): 501-509.10.1109/TMI.2004.825627
  21. Stapor K., Switonski A., Chrastek R. and Michelson G. (2004). Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis, Lecture Notes in Computer Science, 3039: 41-48.10.1007/978-3-540-25944-2_6
  22. Stapor K. and Switonski A. (2004). Automatic analysis of fundus eye images using mathematical morphology and neural networks for supporting glaucoma diagnosis, Machine Graphics & Vision13(1/2): 65-78.
  23. Tamura S., Tanaka K., Ohmori S., Okazaki K., Okada A. and Hoshi M. (1983). Semiautomatic leakage analyzing system for time series fluorescein ocular fundus angiography, Pattern Recognition16(1): 149-162.10.1016/0031-3203(83)90018-3
  24. Zana F. and Klein J. C. (2001). Segmentation of vessellike patterns using mathematical morphology and curvature evaluation, IEEE Transactions on Image Processing10(7): 1010-1019.10.1109/83.93109518249674
DOI: https://doi.org/10.2478/v10006-008-0036-5 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 399 - 407
Published on: Oct 6, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Yong Yang, Shuying Huang, Nini Rao, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 3 (September 2008)