Have a personal or library account? Click to login
Determining the Weights of A Fourier Series Neural Network on the Basis of the Multidimensional Discrete Fourier Transform Cover

Determining the Weights of A Fourier Series Neural Network on the Basis of the Multidimensional Discrete Fourier Transform

Open Access
|Oct 2008

References

  1. Bracewell R. (1999). The Fourier Transform and Its Applications, 3rd Edn., McGraw-Hill, New York, NY.
  2. Chu E. and George A. (2000). Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms, CRC Press, Boca Raton, FL.10.1201/9781420049961
  3. Dutt A. and Rokhlin V. (1993). Fast Fourier transforms for nonequispaced data, Journal of Scientific Computing14(6): 1368-1393.10.1137/0914081
  4. Gonzalez R. C. and Woods R. E. (1999). Digital Image Processing, 2nd Edn., Prentice-Hall, Inc., Boston, MA.
  5. Halawa K. (2008). Fast method for computing outputs of Fourier neutral networks, in: K. Malinowski and L. Rutkowski, Eds., Control and Automation: Current Problems and Their Solutions, EXIT, Warsaw, pp. 652-659, (in Polish).
  6. Hyvarinen A. and Oja E. (2000). Independent component analysis: Algorithms and applications, Neural Networks13(4): 411-430.10.1016/S0893-6080(00)00026-5
  7. Joliffe I. T. (1986). Principal Component Analysis, Springer-Verlag, New York, NY.10.1007/978-1-4757-1904-8
  8. Kegl B., Krzyżak A., Linder T. and Zeger K. (2000). Learning and design of principal curves, IEEE Transactions on Pattern Analysis and Machine Intelligence22(13): 281-297.10.1109/34.841759
  9. Li H. and Sun Y. (2005). The study and test of ICA algorithms, Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, pp. 602-605.
  10. Liu Q. H. and Nyguen N. (1998). An accurate algorithm for nonuniform fast Fourier transforms, Microwave and Guided Wave Letters8(1): 18-20.10.1109/75.650975
  11. Nelles O. (2001). Nonlinear System Identification: From Classical Approaches to Neural Network and Fuzzy Models, Springer-Verlag, Berlin.
  12. Rafajłowicz E. and Pawlak M. (1997). On function recovery by neural networks based on orthogonal expansions, Nonlinear Analysis, Theory and Applications30(3): 1343-1354.10.1016/S0362-546X(97)00223-X
  13. Rafajłowicz E. and Skubalska-Rafajłowicz E. (1993). FFT in calculating nonparametric regression estimate based on trigonometric series, International Journal of Applied Mathematics and Computer Science3(4): 713-720.
  14. Sher C. F., Tseng C. S. and Chen C. (2001). Properties and performance of orthogonal neural network in function approximation, International Journal of Intelligent Systems16(12): 1377-1392.10.1002/int.1065
  15. Tseng C. S. and Chen C. S. (2004). Performance comparison between the training method and the numerical method of the orthogonal neural network in function approximation, International Journal of Intelligent Systems19(12): 1257-1275.10.1002/int.20047
  16. Van Loan C. (1992). Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia, PA.10.1137/1.9781611970999
  17. Walker J. (1996). Fast Fourier Transforms, CRC Press, Boca Raton, FL.
  18. Zhu C., Shukla D. and Paul F. (2002). Orthogonal functions for system identification and control, in: C. T. Leondes (Ed.), Neural Networks Systems, Techniques and Apllications: Control and Dynamic Systems, Academic Press, San Diego, CA, pp. 1-73.
DOI: https://doi.org/10.2478/v10006-008-0033-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 369 - 375
Published on: Oct 6, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Krzysztof Halawa, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 3 (September 2008)