Have a personal or library account? Click to login
Natural Quantum Operational Semantics with Predicates Cover
Open Access
|Oct 2008

References

  1. Aceto L. (1994). GSOS and finite labelled transition systems, Theoretical Computer Science131(1): 181-195.10.1016/0304-3975(94)90094-9
  2. de Bakker J. W., de Roever W. P. (1972). A calculus for recursive programs schemes, in: M. Nivat (Ed.), Automata, Languages, and Programming, North-Holland, Amsterdam, pp. 167-196.
  3. de Bakker J. W., Meertens L. G. L. T. (1975). On the completeness of the inductive assertion method, Journal of Computer and Systems Sciences11(3): 323-357.10.1016/S0022-0000(75)80056-0
  4. Bennett C. H., Brassard G., Crepeau C., Jozsa R., Peres A. and Wooters W. K. (1993). Teleporting an unknown state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters70(13): 1895-1899.10.1103/PhysRevLett.70.1895
  5. Birkhoff G. and von Neumann J. (1936). The logic of quantum mechanics, Annals of Mathematics37(4): 823-843.10.2307/1968621
  6. Bloom B. (1989): Ready Simulation, Bisimulation, and the Semantics of CCS-like Languages, Ph.D. thesis, Massachusetts Institute of Technology.
  7. Bloom B., Istrail S., Meyer A. R. (1989). Bisimulation can't be traced: Preliminary report, Conference Record of the 15th Annual ACM Symposium on Principles of Programming Languages, San Diego, CA, USA, pp. 229-239.
  8. Boschi D., Branca S., de Martini F., Hardy L. and Popescu S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters80(6): 1121-1125.10.1103/PhysRevLett.80.1121
  9. Bouwmeester D., Pan J. W., Mattle K., Eibl M., Weinfurter H. and Zeilinger A. (1997). Experimental quantum teleportation, Nature390(6660): 575-579.10.1038/37539
  10. Choi M. D. (1975). Completely positive linear maps on complex matrices, Linear Algebra and Its Applications10(3): 285-290.10.1016/0024-3795(75)90075-0
  11. Coecke B. and Martin K. (2002). A partial order on classical and quantum states, Technical report, PRG-RR-02-07, Oxford University.
  12. Deutsch D. and Jozsa R. (1992). Rapid solutions of problems by quantum computation, Proceedings of the Royal Society of London A, 439(1907): 553-558.10.1098/rspa.1992.0167
  13. Dijkstra E. W. (1976). A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ.
  14. D'Hondt E. and Panangaden P. (2006). Quantum weakest preconditions, Mathematical Structures in Computer Science16(3): 429-451.10.1017/S0960129506005251
  15. Gielerak R. and Sawerwain M. (2007). Generalised quantum weakest preconditions, available at: http://arXiv:quant-ph/0710.5239v1
  16. Gleason A. M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics6(4): 885-893.10.1512/iumj.1957.6.56050
  17. Grover L. K. (1996). A fast quantum-mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, ACM Press, New York, NY, pp. 212-219.
  18. Hirvensalo M. (2001). Quantum Computing, Springer-Verlag, Berlin.10.1007/978-3-662-04461-2
  19. Hoare C. (1969). An axiomatic basis for computer programming, Communications of the ACM12(10): 576-583.10.1145/363235.363259
  20. Jozsa R. (2005). An introduction to measurement based quantum computation, available at: http://arXiv:quant-ph/0508124
  21. Kraus K. (1983). State, Effects, and Operations, Springer, Berlin.
  22. Kak S. (2003). Teleportation protocols requiring only one classical bit, available at: http://arXiv:quant-ph/0305085v4
  23. Lalire M., Jorrand P. (2004). A process algebraic approach to concurrent and distributed quantum computation: Operational semantics, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland, pp. 109-126.
  24. Löwner K. (1934): Über monotone Matrixfunktionen, Mathematische Zeitschrift38(1): 177-216.10.1007/BF01170633
  25. Mlnařík H. (2006): LanQ-Operational Semantics of Quantum Programming Language LanQ, Technical report FIMURS-2006-10, available at: http://www.muni.cz/research/publications/706560
  26. Mauerer W. (2005). Semantics and simulation of communication in quantum programming, M. Sc. thesis, University Erlangen-Nuremberg Erlangen, Nürnberg, see: http://arXiv:quant-ph/0511145
  27. Ömer B. (2005). Classical concepts in quantum programming, International Journal of Theoretical Physics, 44(7): 943-955, see: arXiv:quant-ph/0211100. http://arXiv:quant-ph/0211100
  28. Peres A. (1995). Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht.
  29. Plotkin G. D. (2004). A structural approach to operational semantics, Journal of Logic and Algebraic Programming60: 17-139.10.1016/j.jlap.2004.05.001
  30. Raynal P. (2006). Unambiguous state discrimination of two density matrices in quantum information theory, Ph.D. thesis, Institut für Optik, Information und Photonik, Max Planck Forschungsgruppe, see: http://arXiv:quant-ph/0611133
  31. Rüdiger R. (2007). Quantum programming languages: An introductory overview, The Computer Journal50(2): 134-150.10.1093/comjnl/bxl057
  32. Raussendorf R., Briegel H. J. (2001). A one-way quantum computer, Physical Review Letters86(22): 5188-5191, see: arXiv:quant-ph/0010033. http://arXiv:quant-ph/0010033
  33. Raussendorf R., Browne D. E., Briegel H. J. (2003). Measurement-based quantum computation with cluster states, Physical Review A, 68(2), 022312, see: arXiv:quant-ph/0301052. http://arXiv:quant-ph/0301052
  34. Sawerwain M., Gielerak R. and Pilecki J. (2006). Operational semantics for quantum computation, in: Węgrzyn S., Znamirowski L., Czachórski T., Kozielski S. (Eds.), New Technologies in Computer Networks, WKiŁ, Warsaw, Vol. 1, pp. 69-77, (in Polish).
  35. Selinger P.: (2004): Towards a quantum programming language, Mathematical Structures in Computer Science14(5): 527-586.10.1017/S0960129504004256
  36. Selinger P.: (2004). Towards a semantics for higher order quantum computation, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland, pp. 127-143.
  37. Sewell G.: (2005). On the mathematical structure of quantum measurement theory, Reports on Mathematical Physics56(2): 271-290, see: arXiv:math-ph/0505032. http://arXiv:math-ph/0505032
  38. Shor P. (2004). Progress in quntum algorithms, Quantum Information Processing3(1): 5-13.10.1007/s11128-004-3878-2
DOI: https://doi.org/10.2478/v10006-008-0031-x | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 341 - 359
Published on: Oct 6, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Marek Sawerwain, Roman Gielerak, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 3 (September 2008)