Have a personal or library account? Click to login
Inferring Graph Grammars by Detecting Overlap in Frequent Subgraphs Cover

Inferring Graph Grammars by Detecting Overlap in Frequent Subgraphs

Open Access
|Jun 2008

References

  1. Ates K., Kukluk J., Holder L., Cook D. and Zhang K. (2006). Graph grammar induction on structural data for visual programming, Proceedings of the Conference Tools with Artificial Intelligence, Washington DC, USA, pp. 232-242.
  2. Chomsky N. (1956). Three models of language, IRE Transactions on Information Theory 2(3): 113-24.10.1109/TIT.1956.1056813
  3. Cook D. and Holder L. (1994). Substructure discovery using minimum description length and background knowledge, Journal of Artificial Intelligence Research 1: 231-255.10.1613/jair.43
  4. Cook D. and Holder L. (2000). Graph-based data mining, IEEE Intelligent Systems 15(2): 32-41.10.1109/5254.850825
  5. Jeltsch E. and Kreowski H. (1990). Grammatical inference based on hyperedge replacement. Graph-Grammars, Lecture Notes in Computer Science 532: 461-474.
  6. Jonyer I., Holder L. and Cook C. (2002). Concept formation using graph grammars, Proceedings of the KDD Workshop on Multi-Relational Data Mining, Edmonton, Alberta, Canada, pp. 71-79.
  7. Jonyer I., Holder L. and Cook D. (2004). MDL-based contextfree graph grammar induction and applications, International Journal of Artificial Intelligence Tools, 13(1): 65-79.10.1142/S0218213004001429
  8. Kanehisa M., Goto S., Hattori M., Aoki-Kinoshita K.F., Itoh M., Kawashima S., Katayama T., Araki M. and Hirakawa M. (2006). From genomics to chemical genomics: New developments in KEGG, Nucleic Acids Res. 34: D354-357.
  9. Kukluk J., Holder L. and Cook D. (2006). Inference of node replacement recursive graph grammars, Proceedings of the 6-th SIAM International Conference on Data Mining, Washington, USA, pp. 544-548.
  10. Kukluk J., Hun You C., Holder L. and Cook D. (2007). Learning node replacement graph grammars in metabolic pathways, International Conference on Bioinformatics & Computational Biology, (BIOCOMP'07), Las Vegas, NV, USA, pp. 44-50.
  11. Kuramochi M. and Karypis G. (2001). Frequent subgraph discovery, Proceedings of the IEEE 2001 International Conference on Data Mining (ICDM '01), San Jose, CA, USA, pp. 313-320.
  12. Neidle S. (Ed.) (1999). Oxford Handbook of Nucleic Acid Structure, Oxford, Oxford University Press.
  13. Nevill-Manning G. and Witten H. (1997). Identifying hierarchical structure in sequences: A linear-time algorithm, Journal of Artificial Intelligence Research, 7: 67-82.10.1613/jair.374
  14. Phan A., Kuryavyi V., Ma J., Faure A., Andreola M. and Patel D. (2005). An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase, Proceedings of the National Academy of Sciences 102(3): 634-639.10.1073/pnas.040627810254553815637158
  15. Oates T., Doshi S. and Huang F. (2003). Estimating maximum likelihood parameters for stochastic context-free graph grammars, Lecture Notes in Artificial Intelligence 2835: 281-298.10.1007/978-3-540-39917-9_19
  16. Rissanen J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific Company.
  17. Yan X. and Han J., gSpan (2002): Graph-based substructure pattern mining, Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, pp. 721-724.
DOI: https://doi.org/10.2478/v10006-008-0022-y | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 241 - 250
Published on: Jun 16, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Jacek Kukluk, Lawrence Holder, Diane Cook, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 2 (June 2008)