Have a personal or library account? Click to login
Fractional Positive Continuous-Time Linear Systems and Their Reachability Cover

Fractional Positive Continuous-Time Linear Systems and Their Reachability

Open Access
|Jun 2008

References

  1. Engheta N. (1997). On the role of fractional calculus in electromagnetic theory, IEEE Transactions on Atennas and Propagation 39(4): 35-46.10.1109/74.632994
  2. Farina L.and Rinaldi S. (2000). Positive Linear Systems, Theory and Applications, J. Wiley, New York.
  3. Ferreira N.M.F. and Machado J.A.T. (2003). Fractional-order hybrid control of robotic manipulators, Proceedings of the 11th International Conference on Advanced Robotics ICAR'2003, Coimbra, Portugal, pp. 393-398.
  4. Gałkowski K. and Kummert A. (2005). Fractional polynomials and nD systems, Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS'2005, Kobe, Japan, CD-ROM.
  5. Kaczorek T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.10.1007/978-1-4471-0221-2
  6. Kaczorek T. (2006). Computation of realizations of discrete-time cone systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 54(3): 347-350.
  7. Kaczorek T. (2007a). Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control 6(4), (in press).10.23919/ECC.2007.7068247
  8. Kaczorek T. (2007b). Reachability and controllability to zero of cone fractional linear systems, Archives of Control Sciences 17(3): 357-367.10.23919/ECC.2007.7068247
  9. Klamka J. (2002). Positive controllability of positive dynamical systems, Proceedings of American Control Conference, ACC-2002, Anchorage, AL, CD-ROM.10.1109/ACC.2002.1025385
  10. Klamka J. (2005). Approximate constrained controllability of mechanical systems, Journal of Theoretical and Applied Mechanics 43(3): 539-554.
  11. Miller K.S. and B. Ross (1993). An Introduction to the Fractional Calculus and Fractional Differenctial Equations, Willey, New York.
  12. Moshrefi-Torbati M. and K. Hammond (1998). Physical and geometrical interpretation of fractional operators, Journal of the Franklin Institute335B(6): 1077-1086.10.1016/S0016-0032(97)00048-3
  13. Nishimoto K. (1984). Fractional Calculus, Koriyama: Decartes Press.
  14. Oldham K.B. and J. Spanier (1974). The Fractional Calculus, New York: Academic Press.
  15. Ortigueira M.D. (1997). Fractional discrete-time linear systems, Procedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Munich, Germany, Vol. 3, pp. 2241-2244.
  16. Ostalczyk P. (2000). The non-integer difference of the discrete-time function and its application to the control system synthesis, International Journal of Systems Science 31(12): 1551-1561.10.1080/00207720050217322
  17. Ostalczyk P. (2004a). Fractional-order backward difference equivalent forms Part I — Horner's form, IFAC Workshop on Fractional Differentation and its Applications, FDA'04, Bordeaux, France, pp. 342-347.
  18. Ostalczyk P. (2004b), Fractional-order backward difference equivalent forms Part II—Polynomial Form. Proceedings the 1st IFAC Workshop Fractional Differentation and its Applications, FDA'04, Bordeaux, France, pp. 348-353.
  19. Oustalup A. (1993). Commande CRONE, Paris, Hermès.
  20. Oustalup A. (1995). La dérivation non entiére, Paris: Hermès.
  21. Podlubny I. (1999). Fractional Differential Equations, San Diego: Academic Press.
  22. Podlubny I. (2002). Geometric and physical interpretation of fractional integration and fractional differentation, Fractional Calculs and Applied Analysis 5(4): 367-386.
  23. Podlubny I., L. Dorcak and I. Kostial (1997). On fractional derivatives, fractional order systems and PIλDμ-controllers, Procedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 4985-4990.
  24. Reyes-Melo M.E., J.J. Martinez-Vega C.A. Guerrero-Salazar and U. Ortiz-Mendez (2004). Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order, Journal of Optoelectronics and Advanced Materials 6(3): 1037-1043.
  25. Riu D., N. Retiére and M. Ivanes (2001). Turbine generator modeling by non-integer order systems, Proceedings of the IEEE International Conference on Electric Machines and Drives, IEMDC 2001, Cambridge, MA, USA, pp. 185-187.
  26. Samko S. G., A.A. Kilbas and O.I. Marichev (1993). Fractional Integrals and Derivatives. Theory and Applications. London: Gordon and Breach.
  27. Sierociuk D. and D. Dzieliński (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140.
  28. Sjöberg M. and L. Kari (2002). Non-linear behavior of a rubber isolator system using fractional derivatives, Vehicle System Dynamics 37(3): 217-236.10.1076/vesd.37.3.217.3532
  29. Vinagre M., C. A. Monje and A.J. Calderon (2002). Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC'02 TW#2: Fractional Calculus Applications in Automatic Control and Robotics.
  30. Vinagre M. and V. Feliu (2002) Modeling and control of dynamic systems using fractional calculus: Application to electrochemical processes and flexible structures, Proceedings of the 41st IEEE Conference Decision and Control, Las Vegas, NV, USA, pp. 214-239.
  31. Zaborowsky V. and R. Meylaov (2001). Informational network traffic model based on fractional calculus, Proceedings of the International Conference Info-tech and Info-net, ICII 2001, Beijing, China, Vol. 1, pp. 58-63.
DOI: https://doi.org/10.2478/v10006-008-0020-0 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 223 - 228
Published on: Jun 16, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Tadeusz Kaczorek, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 2 (June 2008)