Have a personal or library account? Click to login
Controllability and Observability of Linear Discrete-Time Fractional-Order Systems Cover

Controllability and Observability of Linear Discrete-Time Fractional-Order Systems

Open Access
|Jun 2008

References

  1. Antsaklis P.J. and Michel A.N. (1997). Linear Systems, McGraw-Hill, New York.
  2. Åström K. J. and Wittenmark B. (1996). Computer- Controlled Systems, Theory and Design, 3rd Ed., Prentice Hall Inc., New Jersey.
  3. Axtell M. and Bise E. M. (1990). Fractional calculus applications in control systems, Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, USA, pp. 536-566.
  4. Battaglia J. L., Cois O., Puigsegur L. and Oustaloup A. (2001). Solving an inverse heat conduction problem using a non-integer identified model, International Journal of Heat and Mass Transfer, 44(14): 2671-2680.10.1016/S0017-9310(00)00310-0
  5. Bettayeb M. and Djennoune S. (2006). A note on the controllability and the observability of fractional dynamical systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Workshop Applications, Porto, Portugal, pp. 506-511.
  6. Boukas E.K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability, Mathematical Problems in Engineering, bf 2006 (ID42489): 1-10.10.1155/MPE/2006/42489
  7. Cois O., Oustaloup A., Battaglia E. and Battaglia J.L. (2002). Non integer model from modal decomposition for time domain identification, 41st IEEE CDC'2002 Tutorial Workshop 2, Las Vegas, USA.
  8. Debeljković D. Lj., Aleksendrić M., Yi-Yong N. and Zhang Q. L. (2002). Lyapunov and non-Lyapunov stability of linear discrete time delay systems, Facta Universitatis, Series: Mechanical Engineering 1(9): 1147-1160.
  9. Dorĉák L., Petras I. and Kostial I. (2000). Modeling and analysis of fractional-order regulated systems in the state-space, Procedings of International Carpathian Control Conference, High Tatras, Slovak Republic, pp. 185-188.
  10. Dzieliński A. and Sierociuk D. (2005). Adaptive feedback control of fractional order discrete state-space systems, Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'05), Vienna Austria, pp. 804-809.
  11. Dzieliński A. and Sierociuk D. (2006). Observer for discrete fractional order systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation Applications, Porto, Portugal, pp. 524-529.
  12. Dzieliński A. and Sierociuk D. (2007). Reachability, controllability and observability of the fractional order discrete statespace system, Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR'2007, Szczecin, Poland, pp. 129-134.
  13. Gorenflo R. and Mainardi F. (1997). Fractional calculus: Integral and differential equations of fractional order, in (A. Carpintieri and F. Mainardi, Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Vienna, New York, Springer Verlag.10.1007/978-3-7091-2664-6_6
  14. Hanyga A. (2003). Internal variable models of viscoelasticity with fractional relaxation laws, Proceddings of Design Engineering Technical Conference, Mechanical Vibration and Noise, 48395, American Society of Mechanical Engineers, Chicago, USA.10.1115/DETC2003/VIB-48395
  15. Hotzel R. and Fliess M. (1998). On linear system with a fractional derivation: Introductory theory and examples, Mathematics and Computers in Simulation 45(3): 385-395.10.1016/S0378-4754(97)00118-3
  16. Ichise M., Nagayanagi Y. and Kojima T. (1971). An analog simulation of non integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry 33(2): 253-265.10.1016/S0022-0728(71)80115-8
  17. Kilbas A. A., Srivasta H.M. and Trujillo J. J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
  18. Lakshmikantham D. T. V. (1998). Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York.
  19. Manabe S. (1960). The non-integer integral and its application to control systems, Japanese Institute of Electrical Engineers Journal 80(860): 589-597.
  20. Matignon D. (1994). Reprèsentation en variables d'ètat de modèles de guides d'ondes avec dèrivation fractionnaire, Ph.D. thesis, Universitè Paris XI, France.
  21. Matignon D., d'Andrèa Novel B., Depalle P. and Oustaloup A. (1994). Viscothermal Losses in Wind Instruments: A Non-Integer Model, Academic Verlag, Berlin.
  22. Matignon D. and d'Andrèa-Novel B. (1996). Some results on controllability and observability of finite-dimensional fractional differential systems, Proceedings of the IMACS, IEEE SMC Conference, Lille, France, pp. 952-956.
  23. Matignon D. (1996). Stability results on fractional differential with application to control processing, Proceedings of the IAMCS, IEEE SMC Conference, Lille, France, pp. 963-968.
  24. Miller K. S. and Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations,Wiley, New York.
  25. Mittag-Leffler G. (1904). Sur la reprèsentation analytique d'une branche uniforme d'une fonction monogène, Acta Mathematica 29: 10-181.10.1007/BF02403200
  26. Oldham K. B. and Spanier J. (1974). The Fractional Calculus, Academic Press, New York.
  27. Oustaloup A. (1983). Systèmes asservis linèaires d'ordre fractionnaire, Masson, Paris.
  28. Oustaloup A. (1995). La Dèrivation non entière: Thèorie, synthèse et applications, Hermès, Paris.
  29. Peng Y., Guangming X. and Long W. (2003). Controllability of linear discrete-time systems with time-delay in state, available at http://dean.pku.edu.cn/bksky/1999tzlwj/4.pdf
  30. Podlubny I. (1999). Fractional Differential Equations, Academic Press, San Diego.
  31. Raynaud H. F., Zergainoh A. (2000). State-space representation for fractional-order controllers, Automatica 36(7): 1017-1021.10.1016/S0005-1098(00)00011-X
  32. Sabatier J., Cois O. and Oustaloup A. (2002). Commande de systèmes non entiers par placement de pôles, Deuxième Confèrence Internationale Francophone d'Automatique, CIFA, Nantes, France.
  33. Samko S. G., Kilbas A. A. and Marichev O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam.
  34. Sierociuk D. and Dzieliński A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140.
  35. Valerio D. and Sa da Costa J. (2004). Non-integer order control of a flexible robot, Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, FDA'04, Bordeaux, France.
  36. Vinagre B. M., Monje C. A. and Caldero A. J. (2002). Fractional order systems and fractional order actions, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, 41st IEEE CDC, Las Vegas, USA.
DOI: https://doi.org/10.2478/v10006-008-0019-6 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 213 - 222
Published on: Jun 16, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Said Guermah, Said Djennoune, Maamar Bettayeb, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 2 (June 2008)