Have a personal or library account? Click to login
Time-Optimal Boundary Control of an Infinite Order Parabolic System with Time Lags Cover

Time-Optimal Boundary Control of an Infinite Order Parabolic System with Time Lags

Open Access
|Jun 2008

References

  1. Choquet, G. (1969). Lectures on Analysis, Vol. 2, W.A. Benjamin, New York.
  2. Dubinskii, J. A. (1975). Sobolev spaces of infinite order and behavior of solution of some boundary value problems with unbounded increase of the order of the equation, Matiematiczeskii Sbornik 98: 163-184, (in Russian).
  3. Dubinskii, J. A. (1976). Non-trivality of Sobolev spaces of infinite order for a full Euclidean space and a torus, Matiematiczeskii Sbornik 100: 436-446, (in Russian).
  4. Dubinskii, J. A. (1981). About one method for solving partial differential equations, Doklady Akademii Nauk SSSR 258: 780-784, (in Russian).
  5. Dunford, N. and Schwartz, J. (1958). Linear Operators, Vol. 1, John Wiley and Sons, New York.
  6. El-Saify, H. A. (2005). Optimal control of n x n parabolic lag system involving time lag, IMA Journal of Mathematical Control and Information 22(3): 240-250.10.1093/imamci/dni011
  7. El-Saify, H. A. (2006). Optimal boundary control problem for n x n infinite order parabolic lag system, IMA Journal of Mathematical Control and Information 23(4): 433-445.10.1093/imamci/dni065
  8. Knowles, G. (1978). Time optimal control of parabolic systems with boundary conditions involving time delays, Journal of Optimization Theory and Applications 25(4): 563-574.10.1007/BF00933521
  9. Kowalewski, A. (1988). Boundary control of distributed parabolic system with boundary condition involving a time-varying lag, International Journal of Control 48(6): 2233-2248.10.1080/00207178808906327
  10. Kowalewski, A. (1990a). Feedback control for a distributed parabolic system with boundary condition involving a timevarying lag, IMA Journal of Mathematical Control and Information 7(2): 143-157.10.1093/imamci/7.2.143
  11. Kowalewski, A. (1990b). Optimal control of distributed parabolic systems involving time lags, IMA Journal of Mathematical Control and Information 7(4): 375-393.10.1093/imamci/7.4.375
  12. Kowalewski, A. (1993). Optimal control of parabolic systems with time-varying lags, IMA Journal of Mathematical Control and Information 10(2): 113-129.10.1093/imamci/10.2.113
  13. Kowalewski, A. (1998). Optimal control of distributed parabolic systems with multiple time-varying lags, International Journal of Control 69(3): 361-381.10.1080/002071798222712
  14. Kowalewski, A. (1999). Optimization of parabolic systems with deviating arguments, International Journal of Control 72(11): 947-959.10.1080/002071799220498
  15. Kowalewski, A. (2001). Optimal Control of Infinite Dimensional Distributed Parameter Systems with Delays, University of Mining and Metallurgy Press, Cracow.
  16. Kowalewski, A. and Duda, J. (1992). On some optimal control problem for a parabolic system with boundary condition involving a time-varying lag, IMA Journal of Mathematical Control and Information 9(2): 131-146.10.1093/imamci/9.2.131
  17. Kowalewski, A. and Krakowiak, A. (1994). Time-optimal control of parabolic time lag system, AppliedMathematics and Computer Science 4(1): 19-28.
  18. Kowalewski, A. and Krakowiak, A. (2000). Time-optimal control of parabolic system with time lags given in the integral form, IMA Journal of Mathematical Control and Information 17(3): 209-225.10.1093/imamci/17.3.209
  19. Kowalewski, A. and Krakowiak, A. (2006). Time-optimal boundary control of a parabolic system with time lags given in the integral form, International Journal of Applied Mathematics and Computer Science 16(3): 287-295.
  20. Lions, J. (1971). Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg.10.1007/978-3-642-65024-6
  21. Lions, J. and Magenes, E. (1972). Non-Homogeneous Boundary Value Problems and Applications, Vols. 1 and 2, Springer-Verlag, Berlin-Heidelberg.
  22. Wang, P. K. C. (1975). Optimal control of parabolic systems with boundary conditions involving time delays, SIAM Journal on Control 13(2): 274-293.10.1137/0313016
DOI: https://doi.org/10.2478/v10006-008-0017-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 189 - 198
Published on: Jun 16, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Adam Kowalewski, Anna Krakowiak, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 18 (2008): Issue 2 (June 2008)