Have a personal or library account? Click to login
Optimal Approximation, Simulation and Analog Realization of the Fundamental Fractional Order Transfer Function Cover

Optimal Approximation, Simulation and Analog Realization of the Fundamental Fractional Order Transfer Function

Open Access
|Jan 2008

References

  1. Aoun M., Malti R., Levron F and Oustaloup A. (2003): Numerical simulation of fractional systems. Proceedings of DETC'03 ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference, Chicago, USA.10.1115/DETC2003/VIB-48389
  2. Barbosa R.S., Machado T.J.A. and Silva M.F. (2006): Descritization of complex-order differintegrals. Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal, pp. 340-345.
  3. Cole K.S. and Cole R.H. (1941): Dispersion and absorption in dielectrics, alternation current characterization.Journal of Chemical Physics Vol. 9, pp. 341-351.10.1063/1.1750906
  4. Charef A., Sun H.H., Tsao Y.Y. and Onaral B. (1992): Fractal system as represented by singularity function.IEEE Transactions on Automatic Control, Vol. 37, No. 9, pp. 1465-1470.10.1109/9.159595
  5. Chen Y.Q. and Moore K.L. (2002): Discretization schemes for fractional-order differentiators and integrators.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 3, pp. 363-367.10.1109/81.989172
  6. Davidson D. and Cole R. (1950), Dielectric relaxation in glycerine.Journal of Chemical Physics, Vol. 18, pp. 1417-1418.10.1063/1.1747496
  7. Fuross R.M. and Kirkwood J.K. (1941): Electrical properties of solids VIII-Dipole moments in polyvinyl chloride biphenyl systems.Journal of the American Chemical Society, Vol. 63, pp. 385-394.10.1021/ja01847a013
  8. Hartley T.T. and Lorenzo C.F. (1998): A solution of the fundamental linear fractional order differential equation. Technical Report No. TP-1998-208693, NASA, Ohio.
  9. Goldberger A.L., Bhargava V., West B.J. and Mandell A.J. (1985): On the mechanism of cardiac electrical stability.Biophysics Journal, Vol. 48, pp. 525-528.10.1016/S0006-3495(85)83808-X
  10. Ichise M., Nagayanagi Y and Kojima T. (1971): An analog simulation of non-integer order transfer functions for analysis of electrode processes.Journal of Electro-Analytical Chemistry, Vol. 33, pp. 253-265.10.1016/S0022-0728(71)80115-8
  11. Kuo, Benjamin C. (1995): Automatic Control Systems. Englewood Cliffs: Prentice-Hall.
  12. Manabe S. (1961): The non-integer integral and its application to control systems.ETJ of Japan, Vol. 6, Nos. 3-4, pp. 83-87.
  13. Miller K.S. and Ross B. (1993): An Introduction to the Fractional Calculus and Fractional Differential Equations. New-York: Wiley.
  14. Oustaloup A. (1983): Systèmes Asservis Linéaires d'Ordre Fractionnaire: Théorie et Pratique. Paris: Masson.
  15. Oustaloup A. (1995): La Dérivation Non Entière, Théorie, Synthèse et Application. Paris: Hermes.
  16. Poinot T. and Trigeassou J. C. (2004): Modelling and simulation of fractional systems. Proceedings of the 1st IFAC Workshop on Fractional Differentiation and its Application, Bordeaux, France, pp. 656-663.
  17. Podlubny I. (1994): Fractional-order systems and fractional-order controllers. Technical Report No. UEF-03-94, Slovak Academy of Sciences, Košice Slovakia.
  18. Podlubny I. (1999): Fractional Differential Equations. San Diego: Academic Press.
  19. Petras I., Podlubny I., Vinagre M., Dorcak L. and O'Learya P. (2002): Analogue Realization of Fractional Order Controllers. Fakulta Berg, Technical University of Košice, Slovakia.
  20. Sun H.H. and Onaral B. (1983): A unified approach to represent metal electrode polarization.IEEE Transactions on Biomedical Engineering, Vol. 30, pp. 399-406.10.1109/TBME.1983.3250406618507
  21. Sun H.H., Charef A., Tsao Y.Y. and Onaral B. (1992): Analysis of polarization dynamics by singularity decomposition method.Annals of Biomedical Engineering, Vol. 20, pp. 321-335.10.1007/BF023685341443827
  22. Torvik P.J. and Bagley R.L. (1984): On the appearance of the fractional derivative in the behavior of real materials.Transactions of the ASME, Vol. 51, pp. 294-298.10.1115/1.3167615
  23. Vinagere B.M., Podlubny I., Hernandez A. and Feliu V. (2000): Some approximations of fractional order operators used in control theory and applications.Journal of Fractional Calculus and Applied Analysis, Vol. 3, No. 3, pp. 231-248.
DOI: https://doi.org/10.2478/v10006-007-0037-9 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 455 - 462
Published on: Jan 7, 2008
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Abdelbaki Djouambi, Abdelfatah Charef, Alina Besançon, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 17 (2007): Issue 4 (December 2007)