Have a personal or library account? Click to login
Numerical Approximation of Self-Consistent Vlasov Models for Low-Frequency Electromagnetic Phenomena Cover

Numerical Approximation of Self-Consistent Vlasov Models for Low-Frequency Electromagnetic Phenomena

Open Access
|Oct 2007

References

  1. Bauer S. and Kunze M. (2005): The Darwin approximation of the relativistic Vlasov-Maxwell system. Annales Henri Poincaré, Vol. 6, No. 2, pp. 283-308.10.1007/s00023-005-0207-y
  2. Bégué M.L., Ghizzo A. and Bertrand P. (1999): Two-dimensional Vlasov simulation of Raman scattering and plasma beatwave acceleration on parallel computers. Journal of Computational Physics, Vol. 151, No. 2, pp. 458-478.10.1006/jcph.1999.6193
  3. Benachour S., Filbet F., Laurençcot P. and Sonnendrücker E. (2003): Global existence for the Vlasov-Darwin system in R3 for small initial data. Mathematical Methods in the Applied Sciences., Vol. 26, No. 4, pp. 297-319.10.1002/mma.355
  4. Besse N. (2004): Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM Journal on Numerical Analysis, Vol. 42, No. 1, pp. 350-382.10.1137/S0036142902410775
  5. Besse N. and Mehrenberger M. (2006): Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Mathematics of Computation, (in print).
  6. Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, No. 2, pp. 341-376.10.1016/S0021-9991(03)00318-8
  7. Borodachev L.V. (2005): Elliptic formulation of discrete Vlasov-Darwin model with the implicit finite-difference representation of particle dynamics. Proceedings of 7-th International School/Symposium for Space Simulations, Kyoto, Japan.
  8. Califano F., Prandi R., Pegoraro F. and Bulanov S.V. (1998): Nonlinear filamentation instability driven by an inhomogeneous current in a collisionless plasma. Physical Review E, Vol. 58, No. 6, pp. 19-24.10.1103/PhysRevE.58.7837
  9. Cheng C.Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, No. 3, pp. 330-351.10.1016/0021-9991(76)90053-X
  10. Coppi B., Laval G. and Pellat R. (1996): Dynamics of the geomagnetic tail. Physical Review Letters, Vol. 16, No. 26, pp. 1207-1210.
  11. Degond P. and Raviart P.-A. (1992): An analysis of Darwin model of approximation to Maxwell's eqautions. Forum Mathematics, Vol. 4, pp. 13-44.
  12. Fijalkow E. (1999): A numerical solution to the Vlasov equation. Computer Physics Communications, Vol. 116, No. 2, pp. 319-328.10.1016/S0010-4655(98)00146-5
  13. Filbet F., Sonnendrücker E. and Bertrand P. (2000): Conservative numerical schemes for the Vlasov equation. Journal of Computational Physics, Vol. 172, No. 1, pp. 166-187.
  14. Gibbons M.R. and Hewett D.W. (1995): The Darwin direct implicit particle-on-cell (DADIPIC) method for simulation of low frequency plasma phenomena. Journal of Computational Physics, Vol. 120, No. 2, pp. 231-247.10.1006/jcph.1995.1160
  15. Gibbons M.R. and Hewett D.W. (1997): Characterization of the Darwin direct implicit particle-in-cell method an resulting guidelines for operation. Journal of Computational Physics, Vol. 130, No. 1, pp. 54-66.10.1006/jcph.1996.5475
  16. Kulsrud R.M. (1998): Magnetic reconnection in a magnetohydrodynamic plasma. Physics of Plasmas, Vol. 5, No. 5, pp. 1599-1606.10.1063/1.872827
  17. Lee W.W.L., Startsev E., Hong Q. and Davidson R.C. (2001): Electromagnetic (Darwin) model for threedimensional perturbative particle simulation of high intensity beams. Proceedings of the Particle Accelerator Conference, PACS'2001, Chicago, USA, IEEE Part, Vol. 3, p. 1906.
  18. Masmoudi N. and Mauser N.J. (2001): The selfconsistent Pauli equation. Monatshefte für Mathematik, Vol. 132, No. 1, pp. 19-24.10.1007/s006050170055
  19. Omelchenko Y.A. and Sudan R.N. (1997): A 3-D Darwin-EM Hybrid PIC code for ion ring studies. Journal of Computational Physics, Vol. 133, No. 1, pp. 146-159.10.1006/jcph.1997.5670
  20. Ottaviani M. and Porcelli F. (1993): Nonlinear collisionless magnetic reconnection. Physical Review Letters, Vol. 71, No. 23, pp. 3802-3805.10.1103/PhysRevLett.71.3802
  21. Pallard C. (2006): The initial value problem for the relativistic Vlasov-Darwin system. International Mathematics Research Notices, Vol. 2006, Article ID 57191, available at: DOI:100.1155/IMRN/2006/57191.10.1155/IMRN/2006/57191
  22. Raviart P.-A. and Sonnendrücker E. (1996): A Hierarchy of Approximate Models for the Maxwell Equations. Numerische Mathematik, Vol. 73, No. 3, pp. 329-372.
  23. Schmitz H. and Grauer R. (2006): Darwin-Vlasov simulations of magnetised plasmas. Journal of Computational Physics, Vol. 214, No. 2, pp. 738-756.10.1016/j.jcp.2005.10.013
  24. Sabatier M., Such N., Mineau P., Feix M., Shoucri M., Bertrand P. and Fijalkow E. (1990): Numerical simulations of the Vlasov equation using a flux conservation scheme; comparaison with the cubic spline interpolation code. Technical Report No. 330e, Centre Canadien de Fusion Magnetique, Varennes, Canada.
  25. Sonnendrücker E., Ambrosiano J.J. and Brandon S.T. (1995): A finite element formulation of the Darwin PIC model for use on unstructured grids. Journal of Computational Physics, Vol. 121, No. 2, pp. 281-297.10.1016/S0021-9991(95)90119-1
  26. Taguchi T., Antonsen T.M. Jr., Liu C.S. and Mima K. (2001): Structure formation and tearing of an MeV cylindrical electron beam in a laser-produced plasma. Physical Review Letters, Vol. 86, No. 2, pp. 5055-5058.10.1103/PhysRevLett.86.505511384419
DOI: https://doi.org/10.2478/v10006-007-0030-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 361 - 374
Published on: Oct 11, 2007
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2007 Nicolas Besse, Norbert Mauser, Eric Sonnendrücker, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 17 (2007): Issue 3 (September 2007)