References
- BALÁŽ, V.—VISNIAY, T.: ℐ−convergence of arithmetical functions. In: Number Theory and Its Applications, chapter 8, IntechOpen, London, 2020, pp. 125–145,
- BALÁŽ, V.—FAISANT, A.—GREKOS, G.: On Real Algebras Associated with Ideal Convergence, Real Anal. Exchange 47 (2022), 281–296.
- BALCERZAK, M.—DEMS, K.—KOMISARSKI, A.: Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), no. 1, 715–729.
- BARTOSZEWICZ, A.—G LA¸B, S.—WACHOWICZ, A.: Remarks on ideal boundedness, convergence and variation of sequences, J. Math. Anal. Appl. 375 (2011), 431–435.
- FAISANT, A.—GREKOS, G.—TOMA, V.: On the statistical variation of sequences, J. Math. Anal. Appl. 306 (2005), 432–439.
- FAST, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- FURSTENBERG, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1981.
- HARDY, G. H.: On convergence of certain multiple series, Proc. Cambridge Phil. Soc. 19 (1917), 86–95.
- JIN, R.: Applications of nonstandard analysis in additive number theory, Bull. Symbolic Logic 6 (2000), no. 3, 331–341.
- KOSTYRKO, P.—ŠALÁT, T.—WILCZYŃSKI, W.: I-convergence, Real Anal. Exchange 26 (2000/2001), no. 2, 669–686.
- PAŠTÉKA, M.: Density and Related Topics. VEDA Bratislava, AC Praha, 2017.
- SCHOENBERG, I. J.: The integrability of certain functions and related summability methods, Amer. Math. Monthly 66, 1959, 361–375.
- STRAUCH, O.—Š. PORUBSKÝ, V.: Distribution of Sequences: A Sampler. Schr. Slowak. Akad. Wiss. Vol. 1 [Series of the Slovak Academy of Sciences] Peter Lang, Frankfurt am Main, 2005.
- ŠALÁT, T.: Infinite Series. Academia, Praha, 1974. (In Slovak)