Have a personal or library account? Click to login
Arithmetic Independence of Certain Uniform Sets of Algebraic Integers Cover

Arithmetic Independence of Certain Uniform Sets of Algebraic Integers

Open Access
|Dec 2025

References

  1. SAITO, A.—YAMAGUCHI, A.: Pseudorandom number generation using chaotic true orbits of the Bernoulli map, Chaos 26 (2016), 063122.
  2. SAITO, A.—YAMAGUCHI, A.: Pseudorandom number generator based on the Bernoulli map on cubic algebraic integers, Chaos 28 (2018), 103122.
  3. DELONE, B. N.—FADDEEV, D. K.: The Theory of Irrationalities of the Third Degree. American Mathematical Society, Providence, R.I., 1964.
  4. HAMBLETON, S. A.—WILLIAMS, H. C.: Cubic Fields with Geometry. Springer, 2018.
  5. SILVERMAN, J. H.: The Arithmetic of Dynamical Systems. Springer, New York, 2007.
  6. SHANKS, D.: The simplest cubic fields, Math. Comp. 28 (1974), 1137—1152.
  7. MORTON, P.: Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory 49 (1994), 183–208.
  8. HOSHI, A.: On correspondence between solutions of a family of cubic Thue equations and isomorphism classes of the simplest cubic fields, J. Number Theory 131 (2011), 2135–2150.
  9. HOSHI, A.: On the simplest sextic fields and related Thue equations, Funct. Approx. Comment. Math. 47 (2012), 35–49.
  10. HOSHI, A.: Complete solutions to a family of Thue equations of degree 12, J. Théor. Nombres Bordeaux 29 (2017), 549—568.
  11. NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, 1992.
  12. HARDY, G. H.—WRIGHT, E. M.: An Introduction to the Theory of Numbers, 5th ed. Oxford University Press, 1979.
DOI: https://doi.org/10.2478/udt-2025-0005 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 44 - 67
Submitted on: Nov 15, 2023
|
Accepted on: Aug 18, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Asaki Saito, Jun-Ichi Tamura, Shin-Ichi Yasutomi, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.