Have a personal or library account? Click to login
Distribution of Leading Digits of Imaginary Parts of Riemann Zeta Zeros II Cover

Distribution of Leading Digits of Imaginary Parts of Riemann Zeta Zeros II

By: Yukio Ohkubo and  Oto Strauch  
Open Access
|Dec 2025

Abstract

Let γn, n = 1,2, …, be the sequence of all positive imaginary parts of non-trivial zeros of the Riemann zeta function 𝜁(s) in ascending order. n this paper we give a quantitative result on the distribution of leading block of digits of γn, n = 1,2, …. For Ni =# {n ≥ 1: γn < 10i}(≥ 2) and an r-digits number D = d1d2 ··· dr, we show that the frequency.

#{ nNi:(leadingblockofrdigitsofγn)=D }Ni {{\# \left\{ {n \le {N_i}:\left( {\text{leading block of} \,r\,\text{digits of}\,{\gamma _n}\,} \right) = D} \right\}} \over {{N_i}}} is approximated by 1910r-1+log1018π10r-1((D+1)log10(D+1)-Dlog10D-r-19)10i-10Ni {1 \over {9 \cdot {{10}^{r - 1}}}} + {{\log 10} \over {18\pi {{10}^{r - 1}}}}\left( {\left( {D + 1} \right){{\log }_{10}}\left( {D + 1} \right) - D{{\log }_{10}}D - r - {1 \over 9}} \right){{{{10}^i} - 10} \over {{N_i}}} with the explicit error bound 0.516i2Ni+1.112ilogiNi+10.452iNi+1.668logiNi-1.4741Ni. 0.516{{{i^2}} \over {{N_i}}} + 1.112{{i\log i} \over {{N_i}}} + 10.452{i \over {{N_i}}} + 1.668{{\log i} \over {{N_i}}} - 1.474{1 \over {{N_i}}}.

DOI: https://doi.org/10.2478/udt-2025-0004 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 35 - 43
Submitted on: Jun 17, 2025
|
Accepted on: Aug 11, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Yukio Ohkubo, Oto Strauch, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.