Have a personal or library account? Click to login
A Note on Matrices Over ℤ with Entries Stemming from Binomial Coefficients and from Catalan Numbers Once Pure and Once Taken Modulo 2 Cover

A Note on Matrices Over ℤ with Entries Stemming from Binomial Coefficients and from Catalan Numbers Once Pure and Once Taken Modulo 2

By: Roswitha Hofer  
Open Access
|Jun 2025

References

  1. ADICEAM F. –NESHARIM E. –LUNNON F.: On the t-adic Littlewood conjecture, Duke Math. J. 170 (2021), no. 10, 2371-2419.
  2. ALLOUCHE J.-P. –HAN G.-N. –NIEDERREITER H.: Perfect linear complexity pro leand apwenian sequences, Finite Fields Appl. 68 (2020), 101761.
  3. ALLOUCHE J.-P. –LUBIW A. –MENDÉS FRANCE M. –VAN DER PORTEN, A. J.– SHALLIT J.: Convergents of folded continued fractions, Acta Arith. 77 (1996), no. 1, 77-96.
  4. BACHER R.: Paperfolding and Catalan numbers, arXiv paper (2004), https://arxiv.org/abs/math/0406340.
  5. BACHER R. –CHAPMAN R.: Symmetric Pascal matrices modulo p, European Journal of Combinatorics 25 (2004), 459-473.
  6. BECHER V. –CARTON O.: Normal numbers and nested perfect necklaces, J. Complexity 54 (2019), 101403.
  7. BICKNELL M. –HOGGART V.E., JR.: Unit determinants in Pascal triangles, Fib. Quart. 11 (1973), no. 2, 131-144.
  8. DICK J. –PILLICHSHAMMER F.: Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration, Cambridge University Press, Cambridge, 2010.
  9. FAURE H.: Discrépance de suites associées à un système de numération (en dimensions), Acta Arith. 41 (1982), no. 4, 337-351.
  10. GARRETT S. –ROBERTSON S.: Counterexamples to the p(t)-adic Littlewood Conjecture Over Small Finite Fields, arXiv:2405.14454.
  11. GUO Y. –HAN G. –WU W.: Criteria for apwenian sequences, Advances in Mathematics 389 (2021), 107899.
  12. HOFER R.: Kronecker-Halton sequences in 𝔽p((X−1)), Finite Fields Appl. 50 (2018), 154-177.
  13. HOFER R.: Finding both, the continued fraction and the Laurent series expansion of golden ratio analogs in the field of formal power series, J. Number Theory 223 (2021), 168-194.
  14. HOFER R. –SUZUKI, K.: A complete classi cation of digital (0; m; 3) -nets and digital (0; 2)-sequences in base 2, Unif. Distrib. Theory 14 (2019), No. 1, 43-52.
  15. HOFER R. –LARCHER G.: On existence and discrepancy of certain digital Niederreiter-Halton sequences, Acta Arith. 141 (2010), no. 4, 369-394.
  16. HOFER R. –LARCHER G.: The exact order of discrepancy for Levin’s normal number in base 2, J. Th eor. Nombres Bordeaux 35 (2023), no. 3, 999-1023.
  17. HOFER R. –LARCHER G.: Discrepancy bounds for normal numbers generated by necklaces in arbitrary base, J. Complexity 78 (2023), Paper No. 101767, 26 pp.
  18. LEVIN B. M.: On the discrepancy estimate of normal numbers, Acta Arithmetica 88 (1999), no. 2, pp. 99-111.
  19. LUNNON W. F.: The Pascal matrix, Fib. Quart. 15 (1977), no. 3, 201-204.
  20. MEREB M.: On determinants of matrices related to the Pascal’s triangle, Periodica Mathematica Hungarica 89 (2024), 168-174.
  21. PEART P. –WOAN W.-J.: Generating Functions via Hankel and Stieltjes Matrices, Journal of Integer Sequences 3 (2000), no. 2, Article 00.2.1.
  22. VAN DER POORTEN A.: Formal power series and their continued fraction expansion. In:Algorithmic Number Theory, Proceedings of the Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, pp. 358-371.
  23. VAN DER POORTEN A. J. –SHALLIT J.: Folded continued fractions, J. Number Theory 40 (1992), no. 2, 237-250.
DOI: https://doi.org/10.2478/udt-2025-0003 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 24 - 34
Submitted on: Jan 8, 2025
Accepted on: Apr 18, 2025
Published on: Jun 3, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Roswitha Hofer, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.