Have a personal or library account? Click to login
Uniform Dual Approximation to Veronese Curves in Small Dimension Cover

Uniform Dual Approximation to Veronese Curves in Small Dimension

Open Access
|Feb 2025

References

  1. BADZIAHIN, D.: Upper bounds for the uniform simultaneous Diophantine exponents, Mathematika 68 (2022), no. 3, 805–826.
  2. BADZIAHIN, D.—SCHLEISCHITZ, J.: An improved bound in Wirsing’s problem,Trans. Amer. Math. Soc. 374 (2021), no. 3, 1847–1861.
  3. BUGEAUD, Y.—SCHLEISCHITZ, J.: On uniform approximation to real numbers,Acta Arith. 175 (2016), no. 3, 255–268.
  4. DAVENPORT, H.—SCHMIDT, W. M.: Approximation to real numbers by quadratic irrationals,Acta Arith. 13 (1967), 169–176.
  5. DAVENPORT, H.—SCHMIDT, W. M.: Approximation to real numbers by algebraic integers,Acta Arith. 15 (1969), 393–416.
  6. KHINTCHINE, Y. A.:Über eine Klasse linearer Diophantischer Approximationen, Rendiconti Palermo 50 (1926), 170–195.
  7. LAURENT, M.: Simultaneous rational approximation to the successive powers of a real number, Indag. Math. (N.S.) 14 (2003), no. 1, 45–53.
  8. MARNAT, A.—MOSHCHEVITIN, N. G.: An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation,Mathematika 66 (2020), no. 3, 818–854.
  9. MOSHCHEVITIN, N. G.: Best Diophantine approximations: the phenomenon of degenerate dimension. Surveys in Geometry and Number Theory: Reports on Contemporary Russian Mathematics, London Math. Soc. Lecture Note Ser., Vol. 338, Cambridge Univ. Press, Cambridge, 2007, pp. 158–182,.
  10. POELS, A.: On uniform polynomial approximation,J.Éc. polytech. Math. 11 (2024), 769–807.
  11. POELS, A.—ROY, D.: Simultaneous rational approximation to successive powers of a real number,Trans. Amer. Math.Soc. 375 (2022), no. 9, 6385–6415.
  12. ROY, D.: Approximation to real numbers by cubic algebraic integers. II. Ann. of Math. (2) 158 (2003), no. 3, 1081–1087.
  13. ROY, D.: On simultaneous rational approximations to a real number, its square, and its cube,Acta Arith. 133 (2008), no. 2, 185–197.
  14. SCHLEISCHITZ, J.: Some notes on the regular graph defined by Schmidt and Summerer and uniform approximation, JP J. Algebra, Number Theory Appl. 39 (2017), no. 2, 115–150; https://arxiv.org/abs/1601.00842
  15. SCHLEISCHITZ, J.: Uniform Diophantine approximation and best approximation polynomials,Acta Arith. 185 (2018), no. 3, 249–274.
  16. SCHLEISCHITZ, J.: An equivalence principle between polynomial and simultaneous Diophantine approximation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1063–1085.
  17. SCHLEISCHITZ, J.: On geometry of numbers and uniform rational approximation to the Veronese curve, Period. Math. Hungar. 83 (2021), no. 2, 233–249.
  18. SCHLEISCHITZ, J.: Applications of Siegel’s lemma to a system of linear forms and its minimal points, Mosc. J. Comb. Number Theory 11 (2022), no. 2, 125–148.
  19. WIRSING, E.: Approximation mit algebraischen Zahlen beschr¨ankten Grades,J.Reine Angew. Math. 206 (1961), 67–77.
DOI: https://doi.org/10.2478/udt-2024-0008 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 97 - 120
Submitted on: Oct 7, 2024
Accepted on: Oct 17, 2024
Published on: Feb 24, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Johannes Schleischitz, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.