References
- BARANOV, A.—BELOV, Y.—ULANOVSKII, A.: Gap problem for separated sequences without pain J. Fourier Anal. Appl. 23 (2017), 877–885.
- BEURLING, A.—MALLIAVIN, P.: On the closure of characters and the zeros of entire functions,Acta Math. 118 (1967), 79–93.
- PALEY, RAYMOND E. A. C.—WIENER, N.: Fourier transforms in the complex domain, (Reprint of the 1934 original.) American Mathematical Society Colloquium Publications, Vol. 19. American Mathematical Society, Providence, RI, 1987.
- BINGHAM, N. H.—GOLDIE, C. M.—TEUGELS, J. L.: Regular Variation. Encyclopedia of Mathematics and its Applications, Vol. 27. Cambridge University Press, Cambridge, 1989.
- FUCHS, A.—GIULIANO ANTONINI, R.: Théorie générale des densités, [The general theory of densities] Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 14 (1990), no. 1, 253–294.
- GIULIANO, R.—GREKOS, G.—MIŠÍK, L.: The Beurling–Malliavin density, the Pólya density and their connection, Unif. Distrib. Theory 19 (2024), no 1, 67–86.
- KHABIBULLIN, B. N.: Nonconstructive proofs of the Beurling-Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions,Izv.Math. 45, (1995), 125–149.
- KAHANE, J.-P.: Travaux de Beurling et Malliavin,Séminaire Bourbaki 14, Talk, no. 225 (1962/1962), 27–39, https://eudml.org/doc/109633.
- KOOSIS, P.: The Logarithmic Integral II. In: Cambridge Studies in Advanced Mathematics. Vol 21. Cambridge University Press. Cambridge, 1992.
- KRASICHKOV-TERNOVSKIȈI, I. F.: An interpretation of the Beurling–Malliavin theory on the radius of completeness, Math. USSR-Sbornik 66 (1990), no. 2, 405–429.
- OLIVIER, L.: Remarques sur les séries infinies et leur convergence, J. Reine Angew. Math. 2 (1827), 31–44.
- POLTORATSKI, A.: Spectral gaps for sets and measures,Acta Math. 208 (2012), no. 1, 151–209.
- POLTORATSKI, A.: Completeness of exponentials. In: Beurling-Malliavin and Type Problems (2018), https://eta.impa.br/icm_files/invited/section-8/IL.8.18.pdf, accessible on 2023/12/05.
- POLTORATSKI, A.: Toeplitz methods in completeness and spectral problems.In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. pp. 1771–1796.
- REDHEFFER, R.: Two consequences of the Beurling–Malliavin theory,Proc. Am. Math. Soc. 36 (1972), no. 1, 116–122.
- ŠALÁT, T.: On subseries,Math. Z. 85 (1964), 209–225.