Have a personal or library account? Click to login
Creating Normal Numbers Using the Prime Divisors of Consecutive Integers Cover

Creating Normal Numbers Using the Prime Divisors of Consecutive Integers

Open Access
|Feb 2025

References

  1. DE KONINCK, J.-M.—DOYON, N.: The Life of Primes in 37 Episodes,American Mathematical Society, Providence, RI, 2021.
  2. DE KONINCK, J.-M.—KÁTAI, I.: On a problem on normal numbers raised by Igor Shparlinski, Bull. Aust. Math. Soc. 84 (2011), 337–349.
  3. DE KONINCK, J.-M.—KÁTAI, I.: Construction of normal numbers by classified prime divisors of integers, Funct. Approx. Comment. Math. 45 (2011), no. 2, 231–253.
  4. DE KONINCK, J.-M.—KÁTAI, I.: Normal numbers created from primes and polynomials, Unif. Distrib. Theory 7 (2012), no. 2, 1–20.
  5. DE KONINCK, J.-M.—KÁTAI, I.: Some new methods for constructing normal numbers, Ann. Sci. Math. Québec 36 (2013), no. 2, 349–359.
  6. DE KONINCK, J.-M.—KÁTAI, I.: Construction of normal numbers by classified prime divisors of integers II, Funct. Approx. Comment. Math. 49 (2013), no. 1, 7–27.
  7. DE KONINCK, J.-M.—KÁTAI, I.: Using large prime divisors to construct normal numbers, Ann. Univ. Sci. Budapest Sect. Comput. 39 (2013), 45–62.
  8. DE KONINCK, J.-M.—KÁTAI, I.: Construction of normal numbers using the distribution of the k-th largest prime factor, J. Australian Math. Soc. 88 (2013), 158–168.
  9. DE KONINCK, J.-M.—KÁTAI, I.: Prime-like sequences leading to the construction of normal numbers, Funct. Approx. Comment. Math. 49 (2013), 291—302.
  10. DE KONINCK, J.-M.—KÁTAI, I.: Normal numbers generated using the smallest prime factor function, Ann. Math. Qué. 38 (2014), no. 2, 133–144.
  11. DE KONINCK, J.-M.—KÁTAI, I.: Constructing normal numbers using residues of selective prime factors of integers, Ann. Univ. Sci. Budapest. Sect. Comput. 42 (2014), 127–133.
  12. DE KONINCK, J.-M.—KÁTAI, I.: Normal numbers and the middle prime factor of an integer, Colloq. Math. 135 (2014), no. 1, 69–77.
  13. DE KONINCK, J.-M.—KÁTAI, I.: The number of prime factors function on shifted primes and normal numbers. Topics in Mathematical Analysis and Applications. In: (Themistocles M. Rassias, LászlóTóth, eds.) Springer Optim. Appl. Vol. 94, Springer, Cham., 2014, pp. 315–326.
  14. DE KONINCK, J.-M.—KÁTAI, I.: Complex roots of unity and normal numbers, Journal of Numbers, Vol. 2014 (June), Article ID 437814, 4 pp.
  15. DE KONINCK, J.-M.—KÁTAI, I.: The number of large prime factors of integers and normal numbers,Algébre et théorie des nombres, Publ. Math. Besançon Algèbre Théorie Vol. 2015, pp. 5–12.
  16. DE KONINCK, J.-M.—KÁTAI, I.: Prime factorization and normal numbers, Researches in Mathematics and Mechanics 20 (2015), no. 2, 69–80.
  17. DE KONINCK, J.-M.—LUCA, F.: Analytic Number Theory: Exploring the Anatomy of Integers. Graduate Studies in Math. Vol. 134, American Mathematical Society, Providence, RI, 2012.
  18. ELLIOTT, P. D. T. A.: Probabilistic Number Theory II. Central Limit Theorems. Fundamental Principles of Mathematical Sciences, Vol. 240. Springer-Verlag, Berlin-New York, (1980).
  19. ROSSER, J.B.—SCHOENFELD, L.: Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.
DOI: https://doi.org/10.2478/udt-2023-0010 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 1 - 18
Submitted on: Nov 21, 2022
|
Accepted on: Jun 26, 2023
|
Published on: Feb 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Jean-Marie De Koninck, Imre Kátai, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.