Have a personal or library account? Click to login
On a Reduced Component-by-Component Digit-by-Digit Construction of Lattice Point Sets Cover

On a Reduced Component-by-Component Digit-by-Digit Construction of Lattice Point Sets

Open Access
|Aug 2023

References

  1. COOLS, R.—KUO, F. Y.—NUYENS, D.—SURYANARAYANA, G.: Tent-transformed lattice rules for integration and approximation of multivariate non-periodic functions, J. Complexity 36 (2016), 166–181.
  2. DICK, J.: On the convergence rate of the component-by-component construction of good lattice rules,J.Complexity 20 (2004), 493–522.
  3. DICK, J.—GODA, T.: Stability of lattice rules and polynomial lattice rules constructed by the component-by-component algorithm, J. Comput. Appl. Math. 382 (2021), 113062.
  4. DICK, J.—KRITZER, P.—LEOBACHER, G.—PILLICHSHAMMER, F.: A reduced fast component-by-component construction of lattice points for integration in weighted spaces with fast decreasing weights, J. Comput. Appl. Math. 276 (2015), 1–15.
  5. DICK, J.—KRITZER, P.—PILLICHSHAMMER, F.: Lattice Rules. Springer, Cham, 2022.
  6. DICK, J.—KUO, F. Y.—SLOAN, I. H.: High-dimensional integration—the quasi-Monte Carlo way, Acta Numer. 22 (2013), 133–288.
  7. DICK, J.—NUYENS, D.—PILLICHSHAMMER, F.: Lattice rules for nonperiodic smooth integrands, Numer. Math. 126 (2014), 259–291.
  8. EBERT, A.—KRITZER, P.—NUYENS, D.—OSISIOGU, O.: Digit-by-digit and component-by-component constructions of lattice rules for periodic functions with unknown smoothness,J. Complexity 66 (2021) 101555.
  9. GODA, T.—SUZUKI, K.—YOSHIKI, T.: Lattice rules in non-periodic subspaces of Sobolev spaces, Numer. Math. 141 (2019), 399–427.
  10. HICKERNELL F. J.: A generalized discrepancy and quadrature error bound,Math. Comp. 67 (1998), 299–322.
  11. HICKERNELL, F. J.—NIEDERREITER, H.: The existence of good extensible rank-1 lattices,J. Complexity 19 (2003), 286–300.
  12. HLAWKA, E.: Zur angen¨aherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140–151.
  13. HUA, L.K.—WANG, Y.: Applications of Number Theory to Numerical Analysis. Springer-Verlag, Berlin, 1981.
  14. KOROBOV, N. M.: Approximate evaluation of repeated integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207–1210. In Russian. (English translation of the theorems in [26].)
  15. KOROBOV, N. M.: Number-theoretic methods in approximate analysis. Goz. Izdat. Fiz.--Math., 1963. In Russian. (English translation of results on optimal coefficients in [26].)
  16. KOROBOV, N. M.: On the computation of optimal coefficients, Dokl. Akad. Nauk SSSR 267 (1982), 289–292. In Russian. (English translation see [17].)
  17. KOROBOV, N. M.: On the computation of optimal coefficients, Dokl. Akad. Nauk SSSR 26 (1982), 590–593.
  18. KRITZER, P.: A note on the CBC-DBD construction of lattice rules with general positive weights,J. Complexity 76 (2023), 101721.
  19. KUO, F. Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces,J.Complexity 19 (2003), 301–320.
  20. NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.
  21. NOVAK, E.—WOŹNIAKOWSKI, H.: Tractability of Multivariate Problems. Volume I: Linear Information. EMS, Zurich, 2008.
  22. NUYENS, D.—COOLS, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces,Math. Comp. 75 (2006), 903–920.
  23. SLOAN, I. H.—JOE, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford, 1994.
  24. SLOAN, I. H.—WOŹNIAKOWSKI, H.: When are quasi Monte Carlo algorithms efficient for high-dimensional problems?,J. Complexity 14 (1998), 1–33.
  25. SLOAN, I. H.—WOŹNIAKOWSKI, H.: Tractability of multivariate integration for weighted Korobov classes,J. Complexity 17 (2001), 697–721.
  26. STROUD, A. H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, 1971.
DOI: https://doi.org/10.2478/udt-2023-0007 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 97 - 140
Submitted on: Nov 22, 2022
Accepted on: May 11, 2023
Published on: Aug 10, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Peter Kritzer, Onyekachi Osisiogu, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.