Have a personal or library account? Click to login
Kummer Theory for Multiquadratic or Quartic Cyclic Number Fields Cover

Kummer Theory for Multiquadratic or Quartic Cyclic Number Fields

Open Access
|Dec 2022

References

  1. [1] COHEN, H.: A Course in Computational Algebraic Number Theory.In: Graduate Texts in Mathematics, Vol. 138, Springer-Verlag, Berlin, 1993.10.1007/978-3-662-02945-9
  2. [2] CONRAD, K.: Galois groups as permutation groups, Lecture Notes, Preprint. Available at: https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisaspermgp.pdf.
  3. [3] DEBRY, C.—PERUCCA, A.: Reductions of algebraic integers,J.Number Theory, 167 (2016), 259–283.10.1016/j.jnt.2016.03.001
  4. [4] HARDY, K.—HUDSON, R. H.—RICHMAN, D.—WILLIAMS, K. S. — HOLTZ, N. M.: Calculation of the class numbers of imaginary cyclic quartic fields, Math. Comp. 49 (1987), no. 180, 615–620.
  5. [5] HINDRY, M.—SILVERMAN, J. H.: Diophantine Geometry - An Introduction.In: Graduate Texts in Mathematics, Vol. 201, Springer-Verlag, New York, 2000.
  6. [6] HÖRMANN, F.—PERUCCA, A.—SGOBBA, P.—TRONTO, S.: Explicit Kummer generators for cyclotomic extensions, JP J. Algebra, Number Theory Appl. 53 (2022), no. 1, 69–84.
  7. [7] HÖRMANN, F.—PERUCCA, A.—SGOBBA, P.—TRONTO, S.: Explicit Kummer theory for quadratic fields, JP J. Algebra, Number Theory Appl. 50 (2021), no. 2, 151–178.
  8. [8] LANG, S.: Algebra. (Revised Third Edition), In:Graduate Texts in Mathematics, Vol. 211, Springer-Verlag, New York, 2002.10.1007/978-1-4613-0041-0
  9. [9] MASLEY, J. M.: Class numbers of real cyclic number fields with small conductor,Compositio Math. 37 (1978), no. 3, 297–319.
  10. [10] PERUCCA, A.: The order of the reductions of an algebraic integer, J. Number Theory, 148 (2015), 121–136.10.1016/j.jnt.2014.09.022
  11. [11] PERUCCA, A.—SGOBBA, P.: Kummer theory for number fields and the reductions of algebraic numbers, Int.J.NumberTheory, 15 (2019), no. 8, 1617–1633.
  12. [12] PERUCCA, A.—SGOBBA, P.—TRONTO, S.: Explicit Kummer theory for the rational numbers, Int.J.Number Theory, 16 (2020), no. 10, 2213–2231.
  13. [13] PERUCCA, A.—SGOBBA, P.—TRONTO, S.: The degree of Kummer extensions of number fields,Int.J. NumberTheory, 17 (2021), no. 5, 1091–1110.
  14. [14] THE SAGE DEVELOPERS: SageMath, the Sage Mathematics Software System (Version 9.2), https://www.sagemath.org, 2021.
  15. [15] SCHINZEL, A.: Abelian binomials, power residues and exponential congruences, Acta Arith. 32 (1977), no. 3, 245–274. Addendum, ibid. 36 (1980), 101–104. See also: Andrzej Schinzel Selecta Vol.II, European Mathematical Society, Zürich, 2007, 939–970.
DOI: https://doi.org/10.2478/udt-2022-0017 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 165 - 194
Submitted on: Aug 31, 2021
|
Accepted on: Oct 6, 2022
|
Published on: Dec 12, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Flavio Perissinotto, Antonella Perucca, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.