Have a personal or library account? Click to login
Non-Archimedean Koksma Inequalities, Variation, and Fourier Analysis Cover

Non-Archimedean Koksma Inequalities, Variation, and Fourier Analysis

Open Access
|Dec 2022

References

  1. [1] BAKER, M.—RUMELY, R.: Potential Theory and Dynamics on the Berkovich Projective Line.In: Math. Surveys and Monogr. Vol. 159, Amer.Math. Soc., Providence, RI, 2010.
  2. [2] BEER, S.: Zur Theorie der Gleichverteilung im p-adischen,Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II, 176 (1967/68), 499–519.
  3. [3] BERKOVICH, V. G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields,In: Math. Surveys and Monogr. Vol. 33, Amer. Math. Soc., Providence, RI, 1990.
  4. [4] DASGUPTA, S.—TEITELBAUM, J.: The p-adic upper half plane. p-adic Geometry. In: Univ. Lecture Ser. Vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 65–121.
  5. [5] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences.In: Pure and Applied Mathematics. Vol. 14, John Wiley & Sons, a Wiley-Interscience Publication. New York-London-Sydney, 1974.
  6. [6] MOROKOFF, W. J.—CAFLISCH, R. E.: Quasi-Monte Carlo integration, J. Comput. Phys. 122 (1995), 218–230.10.1006/jcph.1995.1209
  7. [7] NIEDERREITER, H.: Diskrepanz in kompakten abelschen Gruppen. II, Manuscripta Math. 1 (1969), 293–306.10.1007/BF01626600
  8. [8] NIEDERREITER, H.: Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84, (1978), 957–1041.10.1090/S0002-9904-1978-14532-7
  9. [9] RAMAKRISHNAN, D.—VALENZA, R. J.: Fourier analysis on number fields, In:Graduate Texts in Math. Vol. 186, Springer-Verlag, New York, 1999.10.1007/978-1-4757-3085-2
  10. [10] RUDIN, W.: Fourier Analysis on Groups.In: Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons), New York, 1962.
  11. [11] TAIBLESON, M. H.: Fourier series on the ring of integers in a p-series field, Bull. Amer. Math. Soc., 73 (1967), 623–629.10.1090/S0002-9904-1967-11801-9
DOI: https://doi.org/10.2478/udt-2022-0011 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 21 - 50
Submitted on: Mar 15, 2022
|
Accepted on: Apr 17, 2022
|
Published on: Dec 12, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Clayton Petsche, Naveen Somasunderam, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.