Have a personal or library account? Click to login
Insertion in Constructed Normal Numbers Cover
Open Access
|May 2022

References

  1. [1] AISTLEITNER, C.: On modifying normal numbers, Unif. Distrib. Theory 6 (2011), 49–58.
  2. [2]ÁLVAREZ, N.—BECHER, V.—FERRARI, P.—YUHJTMAN, S.: Perfect necklaces,Adv. Appl. Math. 80 (2016), 48 – 61.10.1016/j.aam.2016.05.002
  3. [3] BARBIER, E.: On suppose écrite la suite naturelle des nombres; quel est le (1010000)ième chiffre écrit?. Comptes Rendus des Séances de l’Académie des Sciences Paris 105 (1887), 1238–1239.
  4. [4] BARBIER, E.: On suppose écrite la suite naturelle des nombres; quel est le (101000)ième chiffre écrit?, Comptes Rendus des Séances de l’Académie des Sciences Paris 105 (1887), 795–798.
  5. [5] BECHER, V.—CARTON, O.: Normal numbers and nested perfect necklaces,J. Complexity 54 (2019), art. no. 101403, 12 pp.
  6. [6] BECHER, V.—CORTÉS, L.: Extending de Bruijn sequences to larger alphabets,Inform. Process. Lett. 168 (2021), art. no. 106085, 6 pp.
  7. [7] BUGEAUD, Y.: Distribution Modulo one and Diophantine Approximation.In: Tracts in Mathematics, Vol. 193, Cambridge University Press, Cambridge, 2012.10.1017/CBO9781139017732
  8. [8] CARTON, O.—ORDUNA, E.: Preservation of normality by transducers, Information and Computation (2020), art. no. 104650.
  9. [9] CHAMPERNOWNE, D.: The construction of decimals normal in the scale of ten, J. London Math. Soc. s1–8 (1933), 254–260.10.1112/jlms/s1-8.4.254
  10. [10] WALL, D. D.: Normal Numbers. PhD Thesis, University of California, Berkeley, 1949.
  11. [11] DRMOTA, M.—TICHY, R.: Sequences, Discrepancies and Applications. In: Lecture Notes in Math. Vol. 1651, Springer-Verlag, 1997.
  12. [12] FUKUYAMA, K.: The law of the iterated logarithm for discrepancies of {θnx},Acta Math. Hungar. 118 (2008), 155–170.10.1007/s10474-007-6201-8
  13. [13] HALL, P.: On representatives of subsets, J. London Math. Soc. 10 (1935), 26–30.10.1112/jlms/s1-10.37.26
  14. [14] KAMAE, T.—WEISS, B.: Normal numbers and selection rules,Israel J.Math. 21 (1975), 101–110.10.1007/BF02760789
  15. [15] KUIPERS, L.—NIEDERREITER, H.: Uniform distribution of sequences.In: Pure Appl. Math, Wiley-Interscience, New York-London-Sydney, 1974.
  16. [16] LEVIN, M. B.: On the discrepancy estimate of normal numbers,Acta Arithm. 88 (1999), 99–111.10.4064/aa-88-2-99-111
  17. [17] MOSHCHEVITIN, N. G.—SHKREDOV, I. D.: On the Pyatetskii-Shapiro criterion of normality,Math. Notes 73 (2003), 539–550.10.1023/A:1023263305857
  18. [18] PIATETSKI-SHAPIRO, I. I.: On the law of distribution of the fractional parts of the exponential function, Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.] 15 (1951), 47–52.
  19. [19] RAUZY, G.: Nombres normaux et processus déterministes, Acta Arith. 29 (1976), 211–225.10.4064/aa-29-3-211-225
  20. [20] SCHIFFER, J.: Discrepancy of normal numbers, Acta Arith. 47 (1986), 175–186.10.4064/aa-47-2-175-186
  21. [21] VANDEHEY, J.: Uncanny subsequence selections that generate normal numbers,Unif. Distrib. Theory 12 (2017), 65–75.10.1515/udt-2017-0015
  22. [22] VOLKMANN, B.: On modifying constructed normal numbers, Ann Fac. Sci. Toulouse Math. (5) 1 (1979), no. 3, 269–285.
  23. [23] ZYLBER, A.: From randomness in two symbols to randomness in three symbols,Unif. Distrib. Theory 16 (2021), no. 2. 109–128. (Tesis de Licenciatura en Ciencias de la Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2017.)
DOI: https://doi.org/10.2478/udt-2022-0008 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 55 - 76
Submitted on: May 31, 2021
Accepted on: Mar 3, 2022
Published on: May 31, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Verónica Becher, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.