Have a personal or library account? Click to login
Density of Oscillating Sequences in the Real Line Cover

Density of Oscillating Sequences in the Real Line

Open Access
|May 2022

References

  1. [1] ADICEAM, F.: Rational approximation and arithmetic progressions, Int. J. Number Theory, 11 (2015), no. 2, 451–486.
  2. [2] BEREND, D.—KOLESNIK, G.: Distribution modulo 1 of some oscillating sequences, Israel J. Math. 71 (1990), 161–179.10.1007/BF02811882
  3. [3] BEREND, D.—BOSHERNITZAN, M. D.—KOLESNIK, G.: Distribution modulo 1 of some oscillating sequences II, Israel J. Math. 92 (1995), 125–147.10.1007/BF02762073
  4. [4] BEREND, D.—BOSHERNITZAN, M. D.—KOLESNIK, G.: Distribution modulo 1 of some oscillating sequences III, Acta Math. Hungar. 95, (2002) no. (1–2), 1–20.
  5. [5] BERESNEVICH, V.—HAYNES, A.—VELANI, S.: Sums of reciprocals of fractional parts and multiplicative Diophantine approximations Mem. Amer. Math. Soc. 263 (2020), no. 1276.
  6. [6] CHOW, S.: Bohr sets and multiplicative Diophantine approximation, Duke Math. J. 167 (2018), no. 9, 1623–1642.
  7. [7] MATHEMATICS STACK EXCHANGE: Is n sin(n) dense on the real line? Availabe at: https://math.stackexchange.com/questions/221018/is-n-sin-n-dense-on-the-real--line
  8. [8] TAO, TERENCE: Continued fractions, Bohr sets, and the Littlewood conjecture. In: Expository, Math. CO, Math. NT, Question, January 3, 2012 1629–1630. Available at: https://terrytao.wordpress.com/2012/01/03/continued-fractions-bohr-sets-and--the-littlewood-conjecture/
DOI: https://doi.org/10.2478/udt-2022-0003 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 105 - 130
Submitted on: May 21, 2021
|
Accepted on: Jan 27, 2022
|
Published on: May 31, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Ioannis Tsokanos, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.