Have a personal or library account? Click to login
A Typical Number is Extremely Non-Normal Cover
Open Access
|May 2022

References

  1. [1] ALBEVERIO, S.—PRATSIOVYTYI, M.—TORBIN, G.: Topological and fractal properties of subsets of real numbers which are not normal, Bull. Sci. Math. 129 (2005), 615–630.10.1016/j.bulsci.2004.12.004
  2. [2] AVENI, A.—LEONETTI, P.: Most numbers are not normal, ArXiv:2101.03607.
  3. [3] BIRKHOFF, G. D.: Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), no. 12, 656–660.
  4. [4] BOREL, É.: Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247–271.10.1007/BF03019651
  5. [5] CALUDE, C.—ZAMFIRESCU, T.: Most numbers obey no probability laws.In: Automata and Formal Languages, Vol. VIII (Salgótarján, 1996). Publ. Math. Debrecen 54 (1999), suppl., pp. 619–623.
  6. [6] FALCONER, K. J.: Fractal Geometry: Mathematical Foundations and Applications (3rd edition). John Wiley & Sons, Ltd. Chichester, 2014.
  7. [7] HARDY, G. H.: Divergent Series. Oxford University press, Oxford, 1949.
  8. [8] HYDE, J.—LASCHOS, V.—OLSEN, L.—PETRYKIEWICZ, I.—SHAW, A.: Iterated Cesàro averages, frequencies of digits, and Baire category,Acta Arith. 144 (2010), no. 3, 287–293.
  9. [9] MADRITSCH, M.: Non-normal numbers with respect to Markov partitions, Discrete Contin.Dyn.Syst. 34 (2014), no. 2, 663–676.
  10. [10] MADRITSCH, M.—PETRYKIEWICZ, I.: Non-normal numbers in dynamical systems fulfilling the specification property, Discrete Contin. Dyn. Syst. 34 (2014), no. 11, 4751–4764.
  11. [11] OLSEN, L.: Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 43–53.
  12. [12] OLSEN, L.: Extremely non-normal continued fractions,Acta Arith. 108 (2003), 191–202.10.4064/aa108-2-8
  13. [13] OLSEN, L.—WEST, M.: Average frequencies of digits in infinite IFS’s and applications to continued fractions and Lüroth expansions, Monatsh. Math. 193 (2020), 441–478.10.1007/s00605-020-01457-w
  14. [14] OLSEN, L.—WINTER, S.: Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. (2) 67 (2003), no. 1, 103–122.
  15. [15] OXTOBY, J. C.: Measure and Category: A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics Vol. 2, Springer-Verlag, Berlin, 1980.10.1007/978-1-4684-9339-9
  16. [16] ŠALÁT, T.: A remark on normal numbers, Rev. Roumaine Math. Pures Appl. 11 (1966), 53–56.
  17. [17] ŠALÁT, T.: Über die Cantorschen Reihen, Czechoslovak Math. J. 93 (1968), 25–56.10.21136/CMJ.1968.100810
  18. [18] ŠALÁT, T.—SCHWEIGER, F.: Some sets of sequences of positive integers and normal numbers, Rev. Roumaine Math. Pures Appl. 26 (1981), 1255–1264.
  19. [19] SIGMUND, K.: Nombres normaux et théorie ergodique, In: Théorie ergodique (Actes Journées Ergodiques, Rennes, 1973/1974), Lecture Notes in Math. Vol. 532, Springer-Verlag, Berlin, 1976, pp. 202–215.10.1007/BFb0080181
  20. [20] SIGMUND, K.: On dynamical systems with the specification property, Trans.Amer.Math. Soc. 190 (1974), 285–299.10.1090/S0002-9947-1974-0352411-X
  21. [21] VOLKMANN, B.: Gewinnmengen,Arch. Math. 10 (1959), 235–240.10.1007/BF01240791
DOI: https://doi.org/10.2478/udt-2022-0001 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 77 - 88
Submitted on: Jan 20, 2021
|
Accepted on: Dec 23, 2021
|
Published on: May 31, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Anastasios Stylianou, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.