Have a personal or library account? Click to login
From Randomness in Two Symbols to Randomness in Three Symbols Cover

From Randomness in Two Symbols to Randomness in Three Symbols

By:
Open Access
|Feb 2022

References

  1. AGAFONOV, V. N.: Normal sequences and finite automata. (English. Russian original) Zbl 0242.94040 Sov. Math., Dokl. 9 (1968), 324–325. (Translation from Dokl. Akad. Nauk SSSR 179, 255-256 (1968)).
  2. BECHER, V.—CARTON, O.: Normal Numbers and Computer Science. In: (Valérie Berthéand Michel Rigó, ed.) Sequences, groups, and number theory, Trends in Mathematics Series. Birkhauser/Springer, Cham, 2018. pp. 233–269.<a href="https://doi.org/10.1007/978-3-319-69152-7_7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-69152-7_7</a>
  3. BOREL, É.: Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), no. 1. 247–271.<a href="https://doi.org/10.1007/BF03019651" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF03019651</a>
  4. BUGEAUD, Y.: Distribution Modulo One and Diophantine Approximation. In: Cambridge Tracts in Mathematics Vol. 193, Cambridge University Press, Cambrdge, 2012.<a href="https://doi.org/10.1017/CBO9781139017732" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9781139017732</a>
  5. CHAMPERNOWNE, D.: The Construction of Decimals Normal in the Scale of Ten. J. London Math. Soc. 8 (1933), no. 4, 254–260.<a href="https://doi.org/10.1112/jlms/s1-8.4.254" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1112/jlms/s1-8.4.254</a>
  6. ROGERS, H. JR.: Theory of recursive functions and effective computability (second edition). MIT Press, Cambridge, MA, 1987.
  7. KAMAE, T.—WEISS, B.: Normal numbers and selection rules, Israel J. Math. 21 (1975), no. 2, 101–110.<a href="https://doi.org/10.1007/BF02760789" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02760789</a>
  8. PIATETSKI-SHAPIRO, I. I.: On the law of distribution of the fractional parts of the exponential function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), no. 1, 47–52.
  9. VANDEHEY, J.: Uncanny subsequence selections that generate normal numbers, Unif. Distrib. Theory 12 (2018), no. 2, 65–75.<a href="https://doi.org/10.1515/udt-2017-0015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/udt-2017-0015</a>
  10. BESICOVITCH, A. S.: The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers, Math. Z. 39 (1935), no. 1, 146–156.<a href="https://doi.org/10.1007/BF01201350" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01201350</a>
DOI: https://doi.org/10.2478/udt-2021-0010 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 109 - 128
Submitted on: Apr 18, 2021
Accepted on: Nov 8, 2021
Published on: Feb 2, 2022
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Ariel Zylber, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.