Have a personal or library account? Click to login
Divisibility Parameters and the Degree of Kummer Extensions of Number Fields Cover

Divisibility Parameters and the Degree of Kummer Extensions of Number Fields

Open Access
|Feb 2022

Abstract

Let K be a number field, and let be a prime number. Fix some elements α1,...r of K× which generate a subgroup of K× of rank r. Let n1,...,nr, m be positive integers with mni for every i. We show that there exist computable parametric formulas (involving only a finite case distinction) to express the degree of the Kummer extension K(ζm, α1n1,,αrnr \root {{\ell ^{{n_1}}}} \of {{\alpha _1}} , \ldots ,\root {{\ell ^{{n_r}}}} \of {{\alpha _r}} ) over K(ζm) for all n1,..., nr, m. This is achieved with a new method with respect to a previous work, namely we determine explicit formulas for the divisibility parameters which come into play.

DOI: https://doi.org/10.2478/udt-2021-0008 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 71 - 88
Submitted on: Oct 13, 2020
Accepted on: Aug 30, 2021
Published on: Feb 2, 2022
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Antonella Perucca, Pietro Sgobba, Sebastiano Tronto, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.