Have a personal or library account? Click to login
On the Distribution of αp Modulo One in Quadratic Number Fields Cover

On the Distribution of αp Modulo One in Quadratic Number Fields

Open Access
|Feb 2022

References

  1. BAIER, S.—TECHNAU, M.: On the distribution ofαp modulo one in imaginary quadratic number fields with class number one, J. Théor. Nombres Bordeaux. 32 (2020), no. 3, 719–760.<a href="https://doi.org/10.5802/jtnb.1141" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5802/jtnb.1141</a>
  2. BAIER, S.—MAZUMDER, D.: Diophantine approximation with prime restriction in real quadratic number fields, Math. Z. 2021.http://link.springer.com/article/<a href="https://doi.org/10.1007/s00209-021-02705-x10.1007/s00209-021-02705-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00209-021-02705-x10.1007/s00209-021-02705-x</a>
  3. COLEMAN, M. D.: . The Rosser-Iwaniec sieve in number fields, with an application, Acta Arith. 65 (1993), no. 1, 53–83.<a href="https://doi.org/10.4064/aa-65-1-53-83" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4064/aa-65-1-53-83</a>
  4. FOGELS, E.: On the zeros of Hecke’s L-functions. I, II, Acta Arith. 7 (1962) 87–106, 131–147.<a href="https://doi.org/10.4064/aa-7-2-131-147" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4064/aa-7-2-131-147</a>
  5. HARMAN, G.: On the distribution of αp modulo one. J. London Math. Soc. 27 (1983), no. 2, 9–18.<a href="https://doi.org/10.1112/jlms/s2-27.1.9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1112/jlms/s2-27.1.9</a>
  6. HARMAN, G.: On the distribution of αp modulo one. II, Proc. London Math. Soc. 72 (1996), no. 3, 241–260.<a href="https://doi.org/10.1112/plms/s3-72.2.241" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1112/plms/s3-72.2.241</a>
  7. HARMAN, G.: Prime-detecting Sieves.In: London Mathematical Society Monographs Series, Vol. 33. Princeton University Press, Princeton, N J, 2007.
  8. HARMAN, G.: Diophantine approximation with Gaussian primes, Q. J. Math. 70 (2019), no. 4, 1505–1519.<a href="https://doi.org/10.1093/qmathj/haz038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/qmathj/haz038</a>
  9. HECKE, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I, Math. Z. 1 (1918), 357–376.<a href="https://doi.org/10.1007/BF01465095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01465095</a>
  10. HECKE, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. II, Math. Z. 6 (1920), 11–51.<a href="https://doi.org/10.1007/BF01202991" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01202991</a>
  11. IWANIEC, H.: Rosser’s Sieve, Acta Arith. 36 (1980), 171–202.<a href="https://doi.org/10.4064/aa-36-2-171-202" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4064/aa-36-2-171-202</a>
  12. IWANIEC, H.—KOWALSKI, E.: Analytic Number Theory.In: American Mathematical Society Colloquium Publications, Vol. 53. American Mathematical Society (AMS), Providence, RI, 2004.<a href="https://doi.org/10.1090/coll/053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1090/coll/053</a>
  13. JIA, C.: On the distribution of αp modulo one, J. Number Theory 45 (1993), 241–253.<a href="https://doi.org/10.1006/jnth.1993.1075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jnth.1993.1075</a>
  14. MATOMÄKI, K.: The distribution of αp modulo one, Math. Proc. Camb. Philos. Soc. 147 (2009), no. 2, 267–283.<a href="https://doi.org/10.1017/S030500410900245X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S030500410900245X</a>
  15. MONTGOMERY, H. L.—VAUGHAN, R. C.: Multiplicative Number Theory. I. Classical Theory.In: Cambridge Studies in Advanced Mathematics, Vol. 97. Cambridge University Press, Cambridge, 2007.<a href="https://doi.org/10.1017/CBO9780511618314" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9780511618314</a>
  16. TENENBAUM G.: Introduction to Analytic and Probabilistic Number Theory.(3rd expanded ed.) In: Graduate Studies in Mathematics, Vol. 163. American Mathematical Society (AMS), Providence, RI, 2015.<a href="https://doi.org/10.1090/gsm/163" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1090/gsm/163</a>
DOI: https://doi.org/10.2478/udt-2021-0006 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 1 - 48
Submitted on: Apr 27, 2021
Accepted on: Aug 12, 2021
Published on: Feb 2, 2022
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Stephan Baier, Dwaipayan Mazumder, Marc Technau, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.