Have a personal or library account? Click to login
On the Distribution of αp Modulo One in Quadratic Number Fields Cover

On the Distribution of αp Modulo One in Quadratic Number Fields

Open Access
|Feb 2022

References

  1. BAIER, S.—TECHNAU, M.: On the distribution ofαp modulo one in imaginary quadratic number fields with class number one, J. Théor. Nombres Bordeaux. 32 (2020), no. 3, 719–760.10.5802/jtnb.1141
  2. BAIER, S.—MAZUMDER, D.: Diophantine approximation with prime restriction in real quadratic number fields, Math. Z. 2021.http://link.springer.com/article/10.1007/s00209-021-02705-x10.1007/s00209-021-02705-x
  3. COLEMAN, M. D.: . The Rosser-Iwaniec sieve in number fields, with an application, Acta Arith. 65 (1993), no. 1, 53–83.10.4064/aa-65-1-53-83
  4. FOGELS, E.: On the zeros of Hecke’s L-functions. I, II, Acta Arith. 7 (1962) 87–106, 131–147.10.4064/aa-7-2-131-147
  5. HARMAN, G.: On the distribution of αp modulo one. J. London Math. Soc. 27 (1983), no. 2, 9–18.10.1112/jlms/s2-27.1.9
  6. HARMAN, G.: On the distribution of αp modulo one. II, Proc. London Math. Soc. 72 (1996), no. 3, 241–260.10.1112/plms/s3-72.2.241
  7. HARMAN, G.: Prime-detecting Sieves.In: London Mathematical Society Monographs Series, Vol. 33. Princeton University Press, Princeton, N J, 2007.
  8. HARMAN, G.: Diophantine approximation with Gaussian primes, Q. J. Math. 70 (2019), no. 4, 1505–1519.10.1093/qmathj/haz038
  9. HECKE, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I, Math. Z. 1 (1918), 357–376.10.1007/BF01465095
  10. HECKE, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. II, Math. Z. 6 (1920), 11–51.10.1007/BF01202991
  11. IWANIEC, H.: Rosser’s Sieve, Acta Arith. 36 (1980), 171–202.10.4064/aa-36-2-171-202
  12. IWANIEC, H.—KOWALSKI, E.: Analytic Number Theory.In: American Mathematical Society Colloquium Publications, Vol. 53. American Mathematical Society (AMS), Providence, RI, 2004.10.1090/coll/053
  13. JIA, C.: On the distribution of αp modulo one, J. Number Theory 45 (1993), 241–253.10.1006/jnth.1993.1075
  14. MATOMÄKI, K.: The distribution of αp modulo one, Math. Proc. Camb. Philos. Soc. 147 (2009), no. 2, 267–283.10.1017/S030500410900245X
  15. MONTGOMERY, H. L.—VAUGHAN, R. C.: Multiplicative Number Theory. I. Classical Theory.In: Cambridge Studies in Advanced Mathematics, Vol. 97. Cambridge University Press, Cambridge, 2007.10.1017/CBO9780511618314
  16. TENENBAUM G.: Introduction to Analytic and Probabilistic Number Theory.(3rd expanded ed.) In: Graduate Studies in Mathematics, Vol. 163. American Mathematical Society (AMS), Providence, RI, 2015.10.1090/gsm/163
DOI: https://doi.org/10.2478/udt-2021-0006 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 1 - 48
Submitted on: Apr 27, 2021
|
Accepted on: Aug 12, 2021
|
Published on: Feb 2, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Stephan Baier, Dwaipayan Mazumder, Marc Technau, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.