Abstract
We provide an algorithm to approximate a finitely supported discrete measure μ by a measure νN corresponding to a set of N points so that the total variation between μ and νN has an upper bound. As a consequence if μ is a (finite or infinitely supported) discrete probability measure on [0, 1]d with a sufficient decay rate on the weights of each point, then μ can be approximated by νN with total variation, and hence star-discrepancy, bounded above by (log N)N−1. Our result improves, in the discrete case, recent work by Aistleitner, Bilyk, and Nikolov who show that for any normalized Borel measure μ, there exist finite sets whose star-discrepancy with respect to μ is at most