Have a personal or library account? Click to login
Extreme Values of Euler-Kronecker Constants Cover

Extreme Values of Euler-Kronecker Constants

By: Henry H. Kim  
Open Access
|Oct 2021

References

  1. [1] CHO, P. J.—KIM, H. H.: Logarithmic derivatives of Artin L-functions, Compos. Math. 149 (2013), no. 4, 568–586.
  2. [2] CHO, P. J.—KIM, H. H.: Extreme residues of Dedekind zeta functions, Math. Proc. Cambridge. Philos. Soc. 163 (2017), no. 2, 369–380.
  3. [3] CHO, P. J.—KIM, H. H.: Moments of logarithmic derivatives of L-functions, J. Number Theory 183 (2018), 40–61.10.1016/j.jnt.2017.08.017
  4. [4] IHARA, Y.: On the Euler-Kronecker constants of global fields and primes with small norms, In: Algebraic Geometry and Number Theory, Progress in Mathematics, Vol. 253, Birkhäuser, Boston, MA, 2006, pp. 407–451.10.1007/978-0-8176-4532-8_5
  5. [5] IWANIEC, H.—KOWALSKI, E.: Analytic Number Theory. In: Amer. Math. Soc. Colloq. Publ. Vol. 53, American Mathematical Society, Providence, RI, 2004.
  6. [6] KLINGEN, N.: Arithmetical Similarities. In: Prime decomposition and finite group theory. In: Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.
  7. [7] KOWALSKI, E.—MICHEL, P.: Zeros of families of automorphic L-functions close to 1, Pacific. J. Math. 207 (2002), no. 2, 411–431.
DOI: https://doi.org/10.2478/udt-2021-0002 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 41 - 52
Submitted on: Jan 13, 2021
Accepted on: Apr 6, 2021
Published on: Oct 30, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Henry H. Kim, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.