Have a personal or library account? Click to login
On the Classification of Solutions of Quantum Functional Equations with Cyclic and Semi-Cyclic Supports Cover

On the Classification of Solutions of Quantum Functional Equations with Cyclic and Semi-Cyclic Supports

By: Lan Nguyen  
Open Access
|Oct 2021

References

  1. [1] CHEREDNIK, I.: On q-analogues of Riemann’s zeta, Selecta Math. N S. 7 (2001), 447–491.10.1007/s00029-001-8095-6
  2. [2] KOBLITZ, N.: On Carlitz’s q-Bernoulli numbers, J. Number Theory 14 (1982), 332–339.10.1016/0022-314X(82)90068-3
  3. [3] MOAK, D. S.: The q-analogue of sterling formula, Rocky Mountain J. Math. 14 (1984), 403–413.10.1216/RMJ-1984-14-2-403
  4. [4] NATHANSON, M. B.: A functional equation arising from multiplication of quantum integers, J. Number Theory 103 (2003), no. 2, 214–233.10.1016/j.jnt.2003.05.001
  5. [5] NATHANSON, M. B.: Formal power series arising from multiplication of quantum integers, Unusual applications of number theory DIMACs Ser. Discrete Math. Theoret. Comput. Sci. Vol. 64, (2004) Amer. Math. Soc., Providence, RI, pp.145–157.10.1090/dimacs/064/14
  6. [6] NATHANSON, M. B.: Linear quantum addition rules, Integers 7 (2007), no. 2, 1–6 (A 27).
  7. [7] NGUYEN, L.: On the solutions of a functional equation arising from multiplication of quantum integers, J. Number Theory 130 (2010), no. 6, 1292–1347.10.1016/j.jnt.2010.01.006
  8. [8] NGUYEN, L.: On the classification of solutions of a functional equation arising from multiplication of quantum integers, Unif. Distrib. Theory 8 (2013), no. 2, 49–120.
  9. [9] NGUYEN, L.: Nathanson quantum functional equations and the non-prime semi-group support polynomial solutions, Semigroup Forum 93 (2016) no. 3, 459–490.10.1007/s00233-016-9803-z
  10. [10] NGUYEN, L.: On symmetries of roots of rational functions and the classification of rational function solutions of functional equations arising from multiplication of quantum integers with prime semigroup supports, Aequationes Math. 92 (2018), 1001–1035, DOI:10.1007/s00010-018-0607-y.10.1007/s00010-018-0607-y
  11. [11] NGUYEN, L.: On the rational function solutions of functional equations arising from multiplication of quantum integers, 293 Math. Z. (2019), 903–933, DOI:10.1007/s00209-019-02380-z.10.1007/s00209-019-02380-z
  12. [12] NGUYEN, L.: Quantum functional equations and extension of non-prime supports for solutions with field of coefficients ℚ, (preprint).
  13. [13] SATOH, J.: q-analogue of Riemann’s ζ-function and q-Euler numbers, J. Number Theory 31 (1989), 346–362.10.1016/0022-314X(89)90078-4
DOI: https://doi.org/10.2478/udt-2021-0001 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 1 - 40
Submitted on: Aug 3, 2020
Accepted on: Dec 26, 2020
Published on: Oct 30, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Lan Nguyen, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.