Have a personal or library account? Click to login
On Extremal Problems for Pairs of Uniformly Distributed Sequences and Integrals with Respect to Copula Measures Cover

On Extremal Problems for Pairs of Uniformly Distributed Sequences and Integrals with Respect to Copula Measures

Open Access
|Dec 2020

References

  1. [1] AMBROSIO, L.—GIGLI, N.: A user’s guide to optimal transport. In: Modelling and Optimisation of Flows on Networks, Lecture Notes in Math. Vol. 2062, Springer, Heidelberg, 2013, pp. 1–155.10.1007/978-3-642-32160-3_1
  2. [2] BALÁŽ, V.—IACÒ, M. R.—STRAUCH, O.—THONHAUSER, S.—TICHY, R. F.: An extremal problem in uniform distribution theory, Unif. Distrib. Theory 11 (2016), no. 2. 1–21.10.1515/udt-2016-0012
  3. [3] DURANTE, F.—SEMPI, C.: Principles of Copula Theory, CRC Press, Boca Raton, FL, 2016.10.1201/b18674
  4. [4] FIALOVÁ, J.—STRAUCH, O.: On two-dimensional sequences composed by one-dimensional uniformly distributed sequences, Unif. Distrib. Theory 6 (2011), no. 1. 101–125.
  5. [5] HOFER, M.—IACÒ, M. R.: Optimal bounds for integrals with respect to copulas and applications, J. Optim. Theory Appl. 161 (2014), no. 3, 999–1011.10.1007/s10957-013-0454-x
  6. [6] IACÒ, M. R.—THONHAUSER, S.—TICHY, R. F.: Distribution functions, extremal limits and optimal transport, Indag. Math. (N.S.) 26 (2015), no. 5, 823–841.10.1016/j.indag.2015.05.003
  7. [7] KLEMENT, E. P.—KOLESÁROVÁ, A.—MESIAR, R.—SEMPI, C.: Copulas constructed from horizontal sections, Comm. Statist. Theory Methods 36 (2007), 2901–2911.10.1080/03610920701386976
  8. [8] MROZ, T.—TRUTSCHNIG, W.—FERNÁNDEZ SÁNCHEZ, J.: Distributions with fixed marginals maximizing the mass of the endograph of a function, 2016. arXiv:1602.05807,
  9. [9] NELSEN, R. B.: An Introduction to Copulas. 2nd edition. Springer Series in Statistics. Springer, New York, 2006.
  10. [10] PILLICHSHAMMER, F.—STEINERBERGER, S.: Average distance between consecutive points of uniformly distributed sequences. Unif. Distrib. Theory 4 (2009), no. 1, 51–67.
  11. [11] RACHEV, S. T.—RÜSCHENDORF, L.: Mass Transportation Problems. Vol. I. Theory. Probability and its Applications (New York). Springer-Verlag, New York, 1998.
  12. [12] RUDIN, W.: Real and Complex Analysis. 3rd ed. McGraw-Hill Book Co., New York, 1987.
  13. [13] RÜSCHENDORF, L.: Mathematical Risk Analysis. In: Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg, 2013.10.1007/978-3-642-33590-7
  14. [14] SANTAMBROGIO, F.: Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling. In:Progress in Nonlinear Differential Equations and their Applications Vol. 87. Birkhäuser/Springer, Cham, 2015.10.1007/978-3-319-20828-2
  15. [15] STRAUCH, O.: Some applications of distribution functions of sequences, Unif. Distrib. Theory 10 (2015), no. 2, 117–183.
  16. [16] TRUTSCHNIG, W.: On a strong metric on the space of copulas and its induced dependence measure, J. Math. Anal. Appl. 384 (2011), 690–705.10.1016/j.jmaa.2011.06.013
DOI: https://doi.org/10.2478/udt-2020-0013 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 99 - 112
Submitted on: Jun 12, 2020
Accepted on: Nov 15, 2020
Published on: Dec 25, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Fabrizio Durante, Juan Fernández-Sánchez, Claudio Ignazzi, Wolfgang Trutschnig, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.