Have a personal or library account? Click to login
The Distribution of Rational Numbers on Cantor’s Middle Thirds Set Cover

The Distribution of Rational Numbers on Cantor’s Middle Thirds Set

Open Access
|Dec 2020

References

  1. [B] BOURGAIN, J.: Exponential sum estimates over subgroups ofZq×Z_q^ \times, q arbitrary, J. Anal. Math. 97 (2005), 317–356.10.1007/BF02807410
  2. [BFR] BRODERICK, R.–FISHMAN, L.–REICH, A.: Intrinsic Approximation on Cantor-like Sets, a Problem of Mahler, Mosc. J. Comb. Number Theory 1 (2011), 3–12.
  3. [Bu] BUGEAUD, Y.: Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), no. 3, 677–684.
  4. [E] ERDŐS, P.: On the sum ∑d|2n−1d−1, Israel J. Math. 9 (1971), 43–48.10.1007/BF02771618
  5. [F] FISHMAN, L.: Schmidt’s game on fractals, Israel J. Math. 171 (2009), 77–92.10.1007/s11856-009-0041-x
  6. [FS] FISHMAN, L.—SIMMONS, D.: Intrinsic approximation for fractals defined by rational iterated function systems: Mahler’s research suggestion, Proc. Lond. Math. Soc.(3) 109 (2014), no. 1, 189–212.
  7. [LSV] LEVESLEY, J.—SALP, C.—VELANI, S.: On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann. 338 (2007), no. 1, 97–118.
  8. [M] MAHLER, K.: Some suggestions for further research, Bull. Aust. Math. Soc. 29 (1984), no. 1, 101–108.
  9. [Mo] MOREE, P.: Artin’s primitive root conjecture — a survey, Integers 12 (2012), no. 6, 1305–1416.
  10. [Sch] SCHLEISCHITZ, J.: On intrinsic and extrinsic rational approximation to Cantor sets, Ergodic Theory and Dynamical Systems (2020), 1–30. (DOI:10.1017/etds.2020.7).
  11. [S] SHPARLINSKI, I.: On the arithmetic structure of rational numbers in the Cantor set, Bull. Aust. Math. Soc. (2020), 1–6 (doi:10.1017/S0004972720000386).
  12. [SW] SIMMONS, D.—WEISS, B.: Random walks on homogeneous spaces and Diophantine approximation on fractals, Invent. Math. 216 (2019), 337–394.10.1007/s00222-019-00856-7
  13. [T] TRAUTHWEIN, T.: Approximation of Cantor Rational Cardinalities by Primitive Words, Master 1 project report (2019), Experimental Mathematics Lab, University of Luxembourg, http://math.uni.lu/eml/projects/reports/Cantor_rationals_project_report.pdf
  14. [W] WEISS, B.: Almost no points on a Cantor set are very well approximable, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 949–952.10.1098/rspa.2000.0700
DOI: https://doi.org/10.2478/udt-2020-0011 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 73 - 92
Submitted on: May 23, 2020
Accepted on: Sep 27, 2020
Published on: Dec 25, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Alexander D. Rahm, Noam Solomon, Tara Trauthwein, Barak Weiss, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.