Have a personal or library account? Click to login
On the Maximum Order Complexity of Thue–Morse and Rudin–Shapiro Sequences along Polynomial Values Cover

On the Maximum Order Complexity of Thue–Morse and Rudin–Shapiro Sequences along Polynomial Values

By: Pierre Popoli  
Open Access
|Dec 2020

References

  1. [1] ALLOUCHE, J.-P.—SHALLIT, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge, 2003.10.1017/CBO9780511546563
  2. [2] ALON, N.—KOHAYAKAWA, Y.—MAUDUIT, C.—MOREIRA, C. G.—RÖDL, V.: Measures of pseudorandomness for finite sequences: typical values, Proc. Lond. Math. Soc. (3) 95 (2007), 778–812.10.1112/plms/pdm027
  3. [3] CHRISTOL, G.: Ensembles presque periodiques k-reconnaissables, Theoret. Comput. Sci. 9 (1979), 141–145.10.1016/0304-3975(79)90011-2
  4. [4] DIEM, C.: On the use of expansion series for stream ciphers, LMS J. Comput. Math. 15 (2012), 326–340.10.1112/S146115701200109X
  5. [5] DRMOTA, M.—MAUDUIT, C.—RIVAT, J.: The sum-of-digits function of polynomial sequences, J.Lond. Math. Soc.(2) 84 (2011), 81–102.10.1112/jlms/jdr003
  6. [6] DRMOTA, M.—MAUDUIT, C.—RIVAT, J.: Normality along squares, J. Eur. Math. Soc. (JEMS) 21 (2019), 507–548.10.4171/JEMS/843
  7. [7] MAUDUIT, C.—RIVAT, J.: Rudin–Shapiro sequences along squares, Transactions of the Amer. Math. Soc. 370 (2018), 7899–7921.10.1090/tran/7210
  8. [8] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences. II. The Champernowne, Rudin-Shapiro, and Thue-Morse sequences, a further construction, J. Number Theory 73 (1998), 256–276.10.1006/jnth.1998.2286
  9. [9] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365–377.10.4064/aa-82-4-365-377
  10. [10] MÉRAI, L.—WINTERHOF, A.: On the pseudorandomness of automatic sequences, Cryptogr. Commun. 10 (2018), 1013–1022.10.1007/s12095-017-0260-7
  11. [11] MOSHE, Y.: On the subword complexity of Thue-Morse polynomial extractions, Theoret. Comput. Sci. 389 (2007), 318–329.10.1016/j.tcs.2007.10.015
  12. [12] MÜLLNER, C.: The Rudin-Shapiro sequence and similar sequences are normal along squares, Canad. J. Math. 70 (2018), 1096–1129.10.4153/CJM-2017-053-1
  13. [13] SUN, Z.—WINTERHOF, A.: On the maximum order complexity of subsequences of the Thue-Morse and Rudin-Shapiro sequence, Unif. Distrib. Theory 14 (2019), 33–42.10.2478/udt-2019-0012
  14. [14] SUN, Z.—WINTERHOF, A.: On the maximum order complexity of subsequences of the Thue-Morse and Rudin-Shapiro sequence along squares, Int. J. Comput. Math. Comput. Syst. Theory 4 (2019), 30–36.10.1080/23799927.2019.1566275
DOI: https://doi.org/10.2478/udt-2020-0008 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 9 - 22
Submitted on: Jun 17, 2020
Accepted on: Jun 24, 2020
Published on: Dec 25, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Pierre Popoli, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.