References
- [1] BAXA, C.—SCHOISSENGEIER, J.: Minimum and maximum order of magnitude of the discrepancy of (nα), Acta Arith. 67 (1994), no. 3, 281–290.10.4064/aa-68-3-281-290
- [2] HARDY, G. H.—LITTLEWOOD, J. E.: The lattice-points of a right-angled triangle. (Second memoir), Abh. Math. Semin. Univ. Hamburg 1 (1922), no. 1, 211–248.10.1007/BF02940594
- [3] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. Dover Books on Mathematics (Paperback) May 12, 2006.
- [4] LIARDET, P.—STAMBUL, P.: Algebraic computations with continued fractions, J. Number Theory 73 (1988), no. 1, 92–121.10.1006/jnth.1998.2274
- [5] O’BRYANT, K.—REZNICK, B.—SERBINOWSKA, M.: Almost Alternating Sums, Amer. Math. Monthly 113 (2006), no. 8, 673–688.10.1080/00029890.2006.11920353
- [6] OMARJEE, M.: Problem 11384, Amer. Math. Monthly 115 (2008), no. 8, 757.10.1080/00029890.2008.11920589
- [7] PÉPIN, H.: Question et Réponses. Q86, Revue de mathématiques spéciales, Octobre 1987, 116.
- [8] PÉPIN, H.: Question et Réponses. R86, Revue de mathématiques spéciales, Janvier 1989, 229–232.
- [9] PERELLI, A.—ZANNIER, U.: On the parity of [n2n\sqrt 2 ]. Boll. Un. Mat. Ital. A (6), 2 (1983), no. 1, 77–83.
- [10] PERELLI, A.—ZANNIER, U.: textitAn Ω result in uniform distribution theory, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 149, 95–102.10.1093/qmath/38.1.95
- [11] ROÇADAS L.—SCHOISSENGEIER J.: On the local discrepancy of (nα)-sequences, J. Number Theory 131 (2011), no. 8, 1492–1497.10.1016/j.jnt.2011.01.016
- [12] RUDERMAN, H. D.—BORWEIN, D.: Problems and Solutions: Solutions of Advanced Problems: 6105, Amer. Math. Monthly 85 (1978), no. 3, 207–208. https://www.jstor.org/stable/2321079?seq=1#metadata_info_tab_contents10.2307/2321079
- [13] SCHMIDT, W. M.: Irregularities of distribution.VII, Acta Arith. 21 (1972) 45–50.10.4064/aa-21-1-45-50
- [14] TAURASO, R.: Solution to problem 11384 Amer. Math. Monthly, 115, October 2008. https://www.mat.uniroma2.it/~tauraso/AMM/AMM11384.pdf