Have a personal or library account? Click to login
Quantization for a Mixture of Uniform Distributions Associated with Probability Vectors Cover

Quantization for a Mixture of Uniform Distributions Associated with Probability Vectors

Open Access
|Jul 2020

References

  1. [BW] BUCKLEW, J. A. — WISE, G. L.: Multidimensional asymptotic quantization theory with rth power distortion measures, IEEE Trans. Inform. Theory, 28 (1982), no. 2, 239–247.
  2. [CR]ÇÖMEZ, D.—ROYCHOWDHURY, M. K.: Quantization for uniform distributions on stretched Sierpiński triangles, Monatsh. Math. 190 (2019), no. 1, 79–100.
  3. [DR1] DETTMANN, C. P.—ROYCHOWDHURY, M. K.: Quantization for uniform distributions on equilateral triangles, Real Anal. Exchange, 42 (2017), no. (1), 149–166.
  4. [DR2] DETTMANN, C. P.—ROYCHOWDHURY, M. K.: An algorithm to compute CVTs for finitely generated Cantor distributions, Southeast Asian Bull. Math. (to appear).
  5. [GG] GERSHO, A.—GRAY, R. M.: Vector Quantization and Signal Compression. Kluwer Academy publishers: Boston, MA, 1992.
  6. [GL1] GRAF, S.—LUSCHGY, H.: Foundations of Quantization for Probability Distributions. In: Lecture Notes in Mathematics Vol. 1730, Springer-Verlag, Berlin, 2000.
  7. [GL2] GRAF, S.—LUSCHGY, H.: The Quantization of the Cantor distribution, Math. Nachr. 183 (1997), 113–133.10.1002/mana.19971830108
  8. [GN] GRAY, R. M.—NEUHOFF, D. L.: Quantization. IEEE Trans. Inform. Theory, 44 (1998), 2325–2383.
  9. [L] LINDSAY, L. J.: Quantization dimension for probability distributions, Thesis (Ph.D.)–University of North Texas. ProQuest LLC, Ann Arbor, MI, 2001.
  10. [L1] ROYCHOWDHURY, L.: Optimal quantization for nonuniform Cantor distributions, J. Interdiscip. Math. 22 (2019), no. 8, 1325–1348.
  11. [P] PÖTZELBERGER, K.: The quantization dimension of distributions, Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 3, 507–519.
  12. [R1] ROYCHOWDHURY, M. K.: Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets, J. Fractal Geom. 4 (2017), no. 2, 127–146.
  13. [R2] ROYCHOWDHURY, M. K.: Optimal quantizers for some absolutely continuous probability measures, Real Anal. Exchange 43 (2017), no. 1, 105–136.
  14. [R3] ROYCHOWDHURY, M. K.: Optimal quantization for the Cantor distribution generated by infinite similitudes, Israel J. Math. 231 (2019), no. 1, 437–466.
  15. [R4] ROYCHOWDHURY, M. K.: Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), no. 9, 4555–4570.
  16. [R5] ROYCHOWDHURY, M. K.: Center of mass and the optimal quantizers for some continuous and discrete uniform distributions, J. Interdiscip. Math. 22 (2019), no. 4, 451–471.
  17. [RR1] ROSENBLATT, J.—ROYCHOWDHURY, M. K.: Optimal quantization for piecewise uniform distributions, Unif. Distrib. Theory 13 (2018), no. 2, 23–55.
  18. [RR2] ROSENBLATT, J.—ROYCHOWDHURY, M. K.: Uniform distributions on curves and quantization, arXiv:1809.08364 [math.PR].
  19. [Z] ZAMIR, R.: Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information Theory. Cambridge University Press, Cambridge, 2014.10.1017/CBO9781139045520
DOI: https://doi.org/10.2478/udt-2020-0006 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 105 - 142
Submitted on: Oct 18, 2019
|
Accepted on: Mar 1, 2020
|
Published on: Jul 24, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Mrinal Kanti Roychowdhury, Wasiela Salinas, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.