Have a personal or library account? Click to login
Discrete Correlation of Order 2 of Generalized Rudin-Shapiro Sequences on Alphabets of Arbitrary Size Cover

Discrete Correlation of Order 2 of Generalized Rudin-Shapiro Sequences on Alphabets of Arbitrary Size

Open Access
|Jul 2020

References

  1. [1] ALLOUCHE, J.-P.—BOUSQUET-MÉLOU, M.: Facteurs des suites de Rudin–Shapiro généralisées, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 145–164.
  2. [2] ALLOUCHE, J.-P.—LIARDET, P.: Generalized Rudin–Shapiro sequences,Acta Arith. 60 (1991), 1–27.10.4064/aa-60-1-1-27
  3. [3] ALLOUCHE, J.-P.—SHALLIT, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge, 2003.10.1017/CBO9780511546563
  4. [4] GE, G.: On (g, 4; 1)-difference matrices, Discrete Math. 301 (2005), 164–174.10.1016/j.disc.2005.07.004
  5. [5] GRANT, E.—SHALLIT, J.—STOLL, T.: Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin–Shapiro sequences,ActaArith. 140 (2009), 345–368.
  6. [6] HEDAYAT, A. S.—SLOANE, N. J. A.—STUFKEN, J.: Orthogonal Arrays. Springer, New York, NY, 1999.10.1007/978-1-4612-1478-6
  7. [7] KATZ, D. J.: Sequences with low correlation, Lecture Notes in Comput. Sci. 11321 (2018), 149–172.10.1007/978-3-030-05153-2_8
  8. [8] KONIECZNY, J.: Gowers norms for the Thue–Morse and Rudin–Shapiro sequences, Ann. Inst. Fourier 69 (2019), 1897–1913.10.5802/aif.3285
  9. [9] LAMPIO, P. H.J.: Classification of difference matrices and complex Hadamard matrices. PhD Thesis, Aalto University, 2015.
  10. [10] LAMPIO,P.H.J.—ÖSTERG ARD, P. R. J.: Classification of difference matrices over cyclic groups, J. Statist. Plann. Inference 141 (2011), 1194–1207.10.1016/j.jspi.2010.09.023
  11. [11] MAUDUIT, C.—RIVAT, J.: Prime numbers along Rudin–Shapiro sequences, J. Eur. Math. Soc. 17 (2015), 2595–2642.10.4171/JEMS/566
  12. [12] MAUDUIT, C.—RIVAT, J.: Rudin–Shapiro sequences along squares,Trans.Amer. Math. Soc. 370 (2018), 7899–7921.10.1090/tran/7210
  13. [13] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol,Acta Arith. 82 (1997), 365–377.10.4064/aa-82-4-365-377
  14. [14] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences,J. Number Theory 73 (1998), 256–276.10.1006/jnth.1998.2286
  15. [15] MÉRAI, L.—RIVAT, J.—SÁRKÖZY, A.: The measures of pseudorandomness and the NIST tests,In: Number-theoretic methods in cryptology, Lecture Notes in Comput. Sci. Vol. 10737, Springer, Cham, 2018, 197–216.
  16. [16] QUEFFÉLEC, M.: Une nouvelle propriété des suites de Rudin–Shapiro, Ann. Inst. Fourier (Grenoble) 37 (1987), 115–138.10.5802/aif.1089
  17. [17] QUEFFÉLEC, M.: Questions around the Thue–Morse sequence, Unif. Distrib. Theory 13 (2018), 1–25.10.1515/udt-2018-0001
  18. [18] RIDER, D.: Transformations of Fourier coefficients, Pacific J. Math. 19 (1966), 347–355.10.2140/pjm.1966.19.347
DOI: https://doi.org/10.2478/udt-2020-0001 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 1 - 26
Submitted on: Oct 15, 2019
|
Accepted on: Feb 12, 2020
|
Published on: Jul 24, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Pierre-Adrien Tahay, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.