[5] CHUNG, F. R. K.—GRAHAM, R. L.—WILSON, R. M.: Quasirandom graphs,Proc. Nat. Acad. Sci. U.S.A., 85 (1988), 969–970.10.1073/pnas.85.4.96927968116593909
[8] GOUBIN, L.—MAUDUIT, C.—SÁRKÖZY, A.: Construction of large families of pseudorandom binary sequences, J. Number Theory 106 (2004), 56–69.10.1016/j.jnt.2003.12.002
[10] –––––– On a fast version of a pseudorandom generator.In: General Theory of Information Transfer and Combinatorics. (R. Ahlswede et al.,eds.) In: Lecture Notes Comput. Sci. Vol. 4123, Springer, Berlin, 2006, pp. 326–342.10.1007/11889342_18
[11] –––––– Measures of pseudorandomness.In: Finite Fields and Their Applications, Character Sums and Polynomials (P. Charpin et al., eds.) In: Radon Series on Comput. Appl. Math.Vol.11, De Gruyter, Berlin, 2013, pp. 43–64.10.1515/9783110283600.43
[12] GYARMATI, K.—MAUDUIT, C.—SÁRKÖZY, A.:, Generation of further pseudorandom binary sequences, I (Blowing up a single sequence), Unif. Distrib. Theory 10 (2015), 35–61.
[13] LIU, H.:, Large families of pseudorandom binary sequences and lattices by using the multiplicative inverse,Acta Arith. 159 (2013), 123–131.10.4064/aa159-2-3
[14] LIU, H. N.—ZHAN, T.—WANG, X. Y.: On the correlation of pseudorandom binary sequences with composite moduli, Publ. Math. Debrecen 74 (2009), 195–214.10.5486/PMD.2009.4368
[17] –––––– Construction of pseudorandom binary sequences by using the multiplicative inverse, Acta Math. Hungar. 108 (2005), 239–252.10.1007/s10474-005-0222-y
[23] VILFRED, V.: On circulant graphs,In: Graph Theory and its Applications (R. Balakrishnan et al., eds.), (Anna University, Chennai, March 14–16, 2001) Alpha Science, pp. 34–36.