Have a personal or library account? Click to login

On the Discrepancy of Random Walks on the Circle

Open Access
|Mar 2020

Abstract

Let X1,X2,... be i.i.d. absolutely continuous random variables, let Sk=j=1kXj{S_k} = \sum\nolimits_{j = 1}^k {{X_j}} (mod 1) and let D*N denote the star discrepancy of the sequence (Sk)1≤kN. We determine the limit distribution of NDN*\sqrt N D_N^* and the weak limit of the sequence N(FN(t)-t)\sqrt N \left( {{F_N}(t) - t} \right) in the Skorohod space D[0, 1], where FN (t) denotes the empirical distribution function of the sequence (Sk)1≤kN.

DOI: https://doi.org/10.2478/udt-2019-0015 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 73 - 86
Submitted on: Aug 24, 2018
Accepted on: Mar 12, 2019
Published on: Mar 27, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Alina Bazarova, István Berkes, Marko Raseta, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.