Have a personal or library account? Click to login
The Distributional Asymptotics Mod 1 of (logb n) Cover

The Distributional Asymptotics Mod 1 of (logb n)

By: Chuang Xu  
Open Access
|Mar 2020

References

  1. [1] CABRELLI, C. A.—MOLTER, U. M.: The Kantorovich metric for probability measures on the circle, J. Comput. Appl. Math. 57 (1995), no. 3, 345–361.10.1016/0377-0427(93)E0213-6
  2. [2] DUDLEY, R. M.: Real Analysis and Probability, 2nd ed., Cambridge Univ. Press, 2004.
  3. [3] GIULIANO ANTONINI, R.—STRAUCH, O.: On weighed distribution functions of sequences, Unif. Distrib. Theory 3 (2008), no. 1, 1–18.
  4. [4] IACOBELLI, M.: Asymptotic quantization for probability measures on Riemannian manifolds, ESAIM: Control Optim. Calc. Var. 22 (2016), no. 3, 770–785.10.1051/cocv/2015025
  5. [5] KEMPERMAN, J. H. B.: Distributions modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. 21 (1973), no. 3, 138–163.
  6. [6] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences, John Wiley & Sons, New York, 1974. Reprint edition: Dover Publications, Inc. Mineola, New York, 2006.
  7. [7] MARKLOF, J.—STRÖMBERGSSON, A.: Gaps between logs, Bull. London Math. Soc. 45 (2013), no. 6, 1267–1280.10.1112/blms/bdt060
  8. [8] OHKUBO, Y.: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238.
  9. [9] OHKUBO, Y.—STRAUCH, O.: Distribution of leading digits of numbers, Unif. Distrib. Theory 11 (2016), no. 1, 23–45.10.1515/udt-2016-0003
  10. [10] STRAUCH, O.—BLAŽEKOVÁ, O.: Distribution of the sequence pn/n mod 1, Unif. Distrib. Theory, 1 (2006), no. 1, 45–63.
  11. [11] WINKLER, R.: On the distribution behaviour of sequences,Math. Nachr. 186 (1997), no. 1, 303–312.10.1002/mana.3211860118
  12. [12] WINTNER, A.: On the cyclical distribution of the logarithms of the prime numbers, Quart. J. Math. Oxford 6 (1935), no. 1, 65–66.10.1093/qmath/os-6.1.65
  13. [13] XU, C.: On the rate of convergence for (logb n), preprint (2016), arXiv:1609.08207.
  14. [14] –––––– Rates of convergence for a class of slowly changing sequences (in preparation).
DOI: https://doi.org/10.2478/udt-2019-0007 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 105 - 122
Submitted on: Oct 2, 2017
Accepted on: Sep 12, 2018
Published on: Mar 27, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Chuang Xu, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.