Have a personal or library account? Click to login
On the Intriguing Search for Good Permutations Cover

On the Intriguing Search for Good Permutations

Open Access
|Mar 2020

References

  1. [1] BEHNKE, H.: Zur Theorie der diophantischen Approximationen, Abh. Math.Sem.Hamburg 3 (1924), 261–318; 4 (1926), 33–46.
  2. [2] BÉJIAN, R.: Minoration de la discrépance d’une suite quelconque sur T,Acta Arith. 41 (1982), 185–202.10.4064/aa-41-2-185-202
  3. [3] BÉJIAN, R.—FAURE, H.: Discrépance de la suite de van der Corput, C.R. Acad. Sci. Paris Ser. A 285 (1977), 313–316.
  4. [4] BOURGAIN, J.—KONTOROVICH, A.: On Zaremba’s conjecture, Ann. of Math. (2) 180 (2014), 1–60.10.4007/annals.2014.180.1.3
  5. [5] CARLITZ, L.: Permutations in a finite field. Proc. Amer. Math. Soc. 4 (1953), 538.10.1090/S0002-9939-1953-0055965-8
  6. [6] CHAIX, H.—FAURE, H.: Discrépance et diaphonie en dimension un,Acta Arith. 63 (1993), 103–141.10.4064/aa-63-2-103-141
  7. [7] DE CLERCK, L.: A method for exact calculation of the star discrepancy of plane sets applied to sequences of Hammersley, Monatsh. Math. 101 (1986), 261–278.10.1007/BF01559390
  8. [8] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.10.1017/CBO9780511761188
  9. [9] DRMOTA, M.—TICHY, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics Vol. 1651. Springer Verlag, Berlin, 1997.
  10. [10] DUPAIN, Y.—SÓS, V.: On the discrepancy of (nα) sequences. Topics in classical number theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. Janos Bolyai 34 (1984), 355–387.
  11. [11] FAURE, H.: Discrépance de suites associées à un système de numération (en dimension un), Bull. Soc. Math. France 109 (1981), 143–182.10.24033/bsmf.1935
  12. [12] –––––– On the star-discrepancy of generalized Hammersley sequences in two dimensions, Monatsh. Math. 101 (1986), 291–300.10.1007/BF01559392
  13. [13] FAURE, H.: Good permutations for extreme discrepancy, J. Number Theory 42 (1992), 47–56.10.1016/0022-314X(92)90107-Z
  14. [14] –––––– Discrepancy and diaphony of digital (0, 1)-sequences in prime base,Acta Arith. 117 (2005), 125–148.10.4064/aa117-2-2
  15. [15] –––––– Irregularities of distribution of digital (0, 1)-sequences in prime base, Integers 5 (2005), no. 3, #A07.
  16. [16] –––––– Selection criteria for (random) generation of digital (0,s)-sequences. In: Proceedings of the 6th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing Juan-les-Pins, France, July 7–10, 2004, Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and D. Talay, eds.). Springer Berlin (2006), pp. 113–126.
  17. [17] –––––– Van der Corput sequences towards (0, 1)-sequences in base b,J. Théor. Nombres Bordeaux 19 (2007), 125–140.10.5802/jtnb.577
  18. [18] –––––– Star extreme discrepancy of generalized two-dimensional Hammersley point sets, Unif. Distrib. Theory 3 (2008), 45–65.
  19. [19] FAURE, H.—KRITZER, P.—PILLICHSHAMMER, F.: From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules, Indag. Math., New Ser. 26 (2015), 760–822.
  20. [20] FAURE, H.—LEMIEUX, C.: Generalized Halton sequences in 2008: A comparative study, ACM Trans. Model. Comp. Sim. 19 (2009), 15:1-31.10.1145/1596519.1596520
  21. [21] FAURE, H.—PILLICHSHAMMER, F.: Lpdiscrepancy of generalized two-dimensional Hammersley point sets, Monatsh. Math. 158 (2009), 31–61.10.1007/s00605-008-0039-1
  22. [22] FAURE, H.—PILLICHSHAMMER, F.: L2discrepancy of two dimensional digitally shifted Hammersley point sets in base b. In: Proceedings of the 8th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing, Montréal, Canada, July 6–11, 2008, Monte Carlo and quasi-Monte Carlo methods 2008 (P. L’Ecuyer and A. B. Owen, eds.) Springer Berlin (2009), pp. 355–368.
  23. [23] FAURE, H.—PILLICHSHAMMER, F.—PIRSIC, G.—SCHMID, W. CH.: L2discrepancy of generalized two dimensional Hammersley point sets scrambled with arbitrary permutations,Acta Arith. 141 (2010), 395–418.10.4064/aa141-4-6
  24. [24] FAURE, H.—PILLICHSHAMMER, F.—PIRSIC, G.: L2discrepancy of linearly digit scrambled Zaremba point sets, Unif. Distrib. Theory 6 (2011), 59–81.
  25. [25] FAURE, H.—PILLICHSHAMMER, F.: L2discrepancy of generalized Zaremba point sets, J. Théor. Nombres Bordeaux 23 (2011), 121–136.10.5802/jtnb.753
  26. [26] –––––– A generalization of NUT digital (0, 1)-sequences and best possible lower bounds for star discrepancy,Acta Arith. 158 (2013), 321–340.10.4064/aa158-4-2
  27. [27] HABER, S.: On a sequence of points of interest for numerical quadrature,J. Res. Nat. Bur. Stand. Sect. B 70B (1966), no. 2. 127–136.
  28. [28] HALTON, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2 (1960), 84–90.
  29. [29] HALTON, J. H.—ZAREMBA, S. K.: The extreme and the L2discrepancies of some plane sets, Monatsh. Math. 73 (1969), 316–328.10.1007/BF01298982
  30. [30] HAMMERSLEY, J. M.: Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci. 86 (1960), 844–874.10.1111/j.1749-6632.1960.tb42846.x
  31. [31] HUANG, S.: An improvement to Zaremba’s conjecture, Geom. Funct. Anal. 25 (2015), no. 3, 860–914.
  32. [32] KHINCHIN, A. YA. : Continued Fractions. the University of Chicago Press, Chicago, Ill.-London 1964.10.1063/1.3051235
  33. [33] KRITZER. P.: A new upper bound on the star discrepancy of (0, 1)-sequences, Integers 5(3) (2005), A11.
  34. [34] –––––– On some remarkable properties of the two-dimensional Hammersley point set in base 2,J. Théor. Nombres Bordeaux 18 (2006), 203–221.10.5802/jtnb.540
  35. [35] KRITZER. P.—LARCHER, G.—PILLICHSHAMMER, F.: A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets, Ann. Mat. Pura Appl. 186 (2007), 229–250.10.1007/s10231-006-0002-5
  36. [36] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. Wiley, New York, 1974.
  37. [37] LARCHER, G.: On the star-discrepancy of sequences in the unit-interval,J. Complexity 31 (2015), 474–485.10.1016/j.jco.2014.07.005
  38. [38] –––––– On the discrepancy of sequences in the unit-interval, Indag. Math. (N.S.) 27 (2016), 546–558.10.1016/j.indag.2015.11.003
  39. [39] LARCHER, G.—PUCHHAMMER, F.: An improved bound for the star discrepancy of sequences in the unit interval, Unif. Distrib. Theory 11 (2016), 1–14.10.1515/udt-2016-0001
  40. [40] –––––– Sums of distances to the nearest integer and the discrepancy of digital nets,Acta Arith. 106.4 (2003), 379–408.10.4064/aa106-4-4
  41. [41] MATOUŠEK, J.: On the L2-discrepancy for anchored boxes,J. Complexity 14 (1998), 527–556.10.1006/jcom.1998.0489
  42. [42] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.10.1137/1.9781611970081
  43. [43] OSTROMOUKHOV, V.: Recent progress in improvement of extreme discrepancy and star discrepancy of one-dimensional sequences. In: Monte Carlo and Quasi-Monte Carlo Methods 2008 (L’Ecuyer, P. and A. B. Owen, eds.), Springer-Verlag, Berlin, 2009, 561–572.10.1007/978-3-642-04107-5_36
  44. [44] OSTROWSKI, A.: Bemerkungen zur Theorie der Diophantischen Approximationen I, II, III,Abh. Math.Sem.Hamburg 1 (1922), no. 1, 77–98, 249–250; 4 (1925), no. 1, 224.
  45. [45] PROINOV, P. D.: Estimation of L2-discrepancy of a class of infinite sequences, C.R. Acad. Bulgare Sci. 36 (1983), 37–40.
  46. [46] –––––– On irregularities of distribution. C.R. Acad Bulgare Sci. 39 (1986), 31–34.
  47. [47] PROINOV, P. D.—ATANASSOV, E, Ẏ.: On the distribution of the van der Corput generalized sequence, C.R. Acad. Sci. Paris Sér. I Math. 307 (1988), 895–900.
  48. [48] PROINOV, P. D.—GROZDANOV, V. S.: On the diaphony of the van der Corput-Halton sequence, J. Number Theory 30 (1988), 94–104.10.1016/0022-314X(88)90028-5
  49. [49] PAUSINGER, F.: Weak multipliers for generalized van der Corput sequences,J. Théor. Nombres Bordeaux 24 (2012), no. 3, 729–749.
  50. [50] PAUSINGER, F.—SCHMID, W. CH. : A good permutation for one-dimensional diaphony, Monte Carlo Methods Appl. 16 (2010), 307–322.10.1515/mcma.2010.015
  51. [51] F. PAUSINGER — A. TOPUZOĞLU: On the discrepancy of two families of permuted van der Corput sequences, Unif. Distrib. Theory 13 (2018), 47–64.10.1515/udt-2018-0003
  52. [52] PILLICHSHAMMER, F.: On the discrepancy of (0, 1)-sequences, J. Number Theory 104 (2004), 301–314.10.1016/j.jnt.2003.08.002
  53. [53] RAMSHAW, L.: On the discrepancy of the sequence formed by the multiples of an irrational number, J. Number Theory 30 (1981), 138–175.10.1016/0022-314X(81)90002-0
  54. [54] ROTH, K. F.: On irregularities of distribution,Mathematika 1 (1954), 73–79.10.1112/S0025579300000541
  55. [55] SCHMIDT, W. M.: Irregularities of distribution VII,Acta Arith. 21 (1972), 45–50.10.4064/aa-21-1-45-50
  56. [56] TOPUZOĞLU, A.: The Carlitz rank of permutations of finite fields: a survey,J.Symb. Comput. 64 (2014), 53–66.10.1016/j.jsc.2013.07.004
  57. [57] VAN DER CORPUT, J. G.: Verteilungsfunktionen. I, Proc. Kon. Ned. Akad. v. Wetensch. 38 (1935), 813–821.
  58. [58] –––––– Verteilungsfunktionen. II, Proc. Kon. Ned. Akad. v. Wetensch. 38 (1935), 1058–1066.
  59. [59] WEYL, H.:Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.10.1007/BF01475864
  60. [60] XIAO, Y. J.: Suitesé quiréparties associées aux automorphismes du tore. C.R. Acad. Sci. Paris Sér. I Math. 311 (1990), 579–582.
  61. [61] ZAREMBA, S. K.: La méthode des bons treillis pour le calcul des intégrals multiples. In:Proc. Sympos.Univ. Montréal, September 9–14, 1971, Applications of Number Theory to Numerical Analysis (S.K. Zaremba, ed.), Academic Press, New York (1972), pp. 39–119.
  62. [62] ZINTERHOF, P.:Über einige Absch¨atzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden,Österr. Akad. Wiss. SB II 185 (1976), 121–132.
DOI: https://doi.org/10.2478/udt-2019-0005 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 53 - 86
Submitted on: Jun 20, 2018
Accepted on: Jul 27, 2018
Published on: Mar 27, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Florian Pausinger, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.