Have a personal or library account? Click to login
A Complete Classification of Digital (0,m, 3)-Nets and Digital (0, 2)-Sequences in Base 2 Cover

A Complete Classification of Digital (0,m, 3)-Nets and Digital (0, 2)-Sequences in Base 2

By: Roswitha Hofer and  Kosuke Suzuki  
Open Access
|Mar 2020

References

  1. [1] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.10.1017/CBO9780511761188
  2. [2] FAURE, H.: Discrépance de suites associées à un système de numération (en dimension s),Acta Arith. 41 (1982), 337–351.10.4064/aa-41-4-337-351
  3. [3] FAURE, H.—TEZUKA, S.: Another random scrambling of digital (t, s)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods 2000, (K. T. Fang et. al, eds.), Springer-Verlag, Berlin, 2002, pp. 242–256.
  4. [4] HOFER, R.—LARCHER, G.: On existence and discrepancy of certain digital Niederreiter-Halton sequences, Acta Arith. 141 (2010), 369–394.10.4064/aa141-4-5
  5. [5] KAJIURA, H.—MATSUMOTO, M.—SUZUKI, K.: Characterization of matrices B such that (I, B, B2) generates a digital net with t-value zero, Finite Fields Appl. 52 (2018), 289–300.10.1016/j.ffa.2018.04.011
  6. [6] LOH, W. L.: On the asymptotic distribution of scrambled net quadrature, Ann. Statist. 31 (2003), 1282–1324.10.1214/aos/1059655914
  7. [7] NIEDERREITER, H.: Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273–337.10.1007/BF01294651
  8. [8] ––––––Random Number Generation and Quasi-Monte Carlo Methods.In: CBMS-NSF Regional Conference Series, Applied Mathematics Vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
  9. [9] SOBOL’, I. M.: Distribution of points in a cube and approximate evaluation of integrals, Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802. (In Russian)
  10. [10] TEZUKA, S.: A Generalization of Faure Sequences and its Efficient Implementation, Research Report IBM RT0105 (1994), 1–10. Retrieved as a preprint 2nd of August 2018 from https://www.researchgate.net/publication/311808492_A_generalization_of_Faure_sequences_and_its_efficient_implementation
DOI: https://doi.org/10.2478/udt-2019-0004 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 43 - 52
Submitted on: Jun 11, 2018
Accepted on: Aug 22, 2018
Published on: Mar 27, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Roswitha Hofer, Kosuke Suzuki, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.