Have a personal or library account? Click to login
Higher Order Oscillation and Uniform Distribution Cover

Higher Order Oscillation and Uniform Distribution

Open Access
|Mar 2020

References

  1. [1] DAVENPORT, H.:, On some infinite series involving arithmetical functions (II),Quart. J. Math. Oxford, 8 (1937), 313–320.10.1093/qmath/os-8.1.313
  2. [2] FAN, A.—JIANG, Y.: Oscillating sequences, MMA and MMLS flows and Sarnak’s conjecture, Ergodic Theory Dynam. Systems 38 (2018), no. 5, 1709–1744.
  3. [3] HUA, L. G.: Additive Theory of Prime Numbers.In: Translations of Mathematical Monographs Vol. 13, American Mathematical Society, Providence, R. I., 1965.
  4. [4] JIANG, Y.: Zero entropy continuous interval maps and MMLS-MMA property. Nonlinearity 31 (2018), 2689–2702.
  5. [5]–––––– Orders of oscillation motivated by Sarnak’s conjecture. In: Proceedings of American Mathematical Society (to appear). (Original: Higher order oscillating sequences, affine distal flows on the d-torus, and Sarnak’s conjecture. arXiv:1612.04306 [math.DS]).
  6. [6] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. J. Wiley and Sons, New York, 1974.
  7. [7] LIU, J.—SARNAK, P.: The Möbius function and distal flows, Duke Math. J. 164 (2015), no. 7, 1353–1399.
  8. [8] SARNAK, P.: Three lectures on the Möbius function, randomness and dynamics,IAS Lecture Notes,(2009), 12 pp. https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures%282%29.pdf
  9. [9] SARNAK, P.: Möbius randomness and dynamics, Not. S.Afr.Math. Soc. 43 (2012), 89–97.
  10. [10] ZHAN, T.—LIU, J.-Y.: Exponential sums involving the Möbius function, Indag. Math. (N.S.) 7 (1996), no. 2, 271–278.
DOI: https://doi.org/10.2478/udt-2019-0001 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 1 - 10
Submitted on: Apr 25, 2017
Accepted on: Apr 9, 2018
Published on: Mar 27, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Shigeki Akiyama, Yunping Jiang, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.