Have a personal or library account? Click to login
Sets of Bounded Remainder for The Billiard on A Square Cover

Sets of Bounded Remainder for The Billiard on A Square

Open Access
|Jan 2019

References

  1. [1] BECK, J.: From Khinchin’s conjecture on strong uniformity to superuniform motions, Mathematika 61 (2015), 591–707.10.1112/S0025579314000242
  2. [2] _____ Strong uniformity, in: Radon Ser. Comput. Appl. Math. 15, Uniform Distribution and Quasi-Monte Carlo Methods, Vol. 15 De Gruyter, Berlin, 2014 pp. 17–44.10.1515/9783110317930.17
  3. [3] DRMOTA, M.: Irregularities of continuous distributions, Ann. Inst. Fourier 39 (1989), 501–527.10.5802/aif.1175
  4. [4] DRMOTA, M.—TICHY, R.: Sequences, Discrepancies and Applications. In: Springer Lecture Notes in Mathematics Vol 1651, Springer-Verlag, Berllin 1997.10.1007/BFb0093404
  5. [5] GREPSTAD, S.—LARCHER, G.: Sets of bounded remainder for the continuous irrational rotation on [0,1]2, Acta Arith. 176 (2016), 365–395.10.4064/aa8453-8-2016
  6. [6] KESTEN, H.: On a conjecture of Erdos and Szüsz related to uniform distribution mod 1, Acta Arith. 12 (1966), 193–212.10.4064/aa-12-2-193-212
  7. [7] KUIPERS, L.—NIEDERREITER, H.: : Uniform Distribution of Sequences, Wiley, New York, 1974.
DOI: https://doi.org/10.2478/udt-2018-0011 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 71 - 82
Submitted on: Aug 29, 2016
Accepted on: Jan 16, 2018
Published on: Jan 25, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Ida Aichinger, Gerhard Larcher, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.