Have a personal or library account? Click to login
Optimal Quantization for Piecewise Uniform Distributions Cover

Optimal Quantization for Piecewise Uniform Distributions

Open Access
|Jan 2019

References

  1. [AW] ABAYA, E. F.—WISE, G. L.: Some remarks on the existence of optimal quantizers, Statistics & Probability Letters 2 (1984), no. 6, 349–351.10.1016/0167-7152(84)90045-2
  2. [C] CHUNG, K.-L.: An estimate concerning the Kolmogoroff limits distribution, Trans. Amer. Math. Soc. 67 (1949), 36–50.10.1090/S0002-9947-1949-0034552-5
  3. [PC] COHORT, P.: Limit theorems for random normalized distortion, Ann. Appl. Probab. 14 (2004), no. 1, 118–143.10.1214/aoap/1075828049
  4. [D] DEHEUVELS, P.: Strong bounds for multidimensional spacings, Z. Wahrsch. Verw. Gebiete 64 (1983, 411–424.10.1007/BF00534948
  5. [DR] DETTMANN, C. P.—ROYCHOWDHURY, M. K.: Quantization for uniform distributions on equilateral triangles, Real Anal. Exchange (42) (2017), no. 1, 149–166.10.14321/realanalexch.42.1.0149
  6. [GG] GERSHO, A.—GRAY, R. M.: Vector quantization and signal compression, Kluwer Academy publishers: Boston, 1992.10.1007/978-1-4615-3626-0
  7. [GL] GRAF, S.—LUSCHGY, H.: Foundations of Quantization for Probability Distributions. In: Lecture Notes in Math. Vol. 1730, Springer, Berlin, 2000.10.1007/BFb0103945
  8. [GVL] GRAHAM, R. L.—VAN LINT, J. H.: On the distribution of nθ modulo 1, Canad. J. Math. 20 (1968), 1020–1024.10.4153/CJM-1968-099-1
  9. [GKL] GRAY, R. M.—KIEFFER, J. C.—LINDE, Y.: Locally optimal block quantizer design, Inform. and Control 45 (1980), 178–198.10.1016/S0019-9958(80)90313-7
  10. [GN] GRAY, R. M.—NEUHOFF, D. L.: Quantization, IEEE Trans. Inform. Theory 44 (1998), 2325–2383.10.1109/18.720541
  11. [GL2] GYÖRGY, A.—LINDER, T.: On the structure of optimal entropy-constrained scalar quantizers, IEEE Trans. Inform. Theory 48 (2002), no. 2, 416–427.10.1109/18.978755
  12. [HKK] HAYNES, A.—KELLY, M.—KOIVUSALO, H.: Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices, II, Indag. Math. (N.S.) 28 (2017), no. 1, 138–144.10.1016/j.indag.2016.11.010
  13. [HK] HAYNE, A.—KOIVUSALO, H.: Constructing bounded remainder sets and cut-andproject sets which are bounded distance to lattices, Israel J. Math. 212 (2016), no. 1, 189–201.10.1007/s11856-016-1283-z
  14. [HS] HEWITT, E.—SAVAGE, L.: Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470–501.10.1090/S0002-9947-1955-0076206-8
  15. [K] KHINCHIN, A.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann. 92 (1924), no. 1–2, 115–125.10.1007/BF01448437
  16. [KN] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. John Wiley and Sons, New York-London-Sydney, 1974.
  17. [L] LÉVY, P.: Sur la division d’un segment par des points choisis au hasard, C. R. Acad. Sci Paris, 208 (1939), 147–149.
  18. [MSS] MOTTA, F.—SHIPMAN, P.—SPRINGER, B.: Optimally topologically transitive orbits in discrete dynamical systems, Amer. Math. Monthly 123 (2016), no. 2, 115–135.10.4169/amer.math.monthly.123.2.115
  19. [R] ROYCHOWDHURY, M. K.: Optimal quantizers for some absolutely continuous probability measures, Real Anal. Exchange, 43 (2017), no. 1, 105–136.10.14321/realanalexch.43.1.0105
  20. [Z] ZAM, R.: Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information Theory. Cambridge University Press, 2014.
DOI: https://doi.org/10.2478/udt-2018-0009 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 23 - 55
Submitted on: Jul 27, 2017
Accepted on: Nov 30, 2017
Published on: Jan 25, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Joseph Rosenblatt, Mrinal Kanti Roychowdhury, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.