Have a personal or library account? Click to login
On Irregularities of Distribution of Binary Sequences Relative to Arithmetic Progressions, II (Constructive Bounds) Cover

On Irregularities of Distribution of Binary Sequences Relative to Arithmetic Progressions, II (Constructive Bounds)

Open Access
|Jan 2019

References

  1. [1] BURGESS, D. A.: On character sums and primitive roots, Proc. London Math. Soc. 12 (1962), no. 3, 179–192.10.1112/plms/s3-12.1.179
  2. [2] DARTYGE, C.—GYARMATI, K.—SÁRKÖZY, A.: On irregularities of distribution of binary sequences relative to arithmetic progressions, I. (General results), Unif. Distrib. Theory 12 (2017), no. 1, 55–67.10.1515/udt-2017-0004
  3. [3] DAVENPORT, H.—ERDŐS, P.: The distribution of quadratic and higher residues, Publ. Math. Debrecen 2 (1952), 252–265.10.5486/PMD.1952.2.3-4.18
  4. [4] ERDŐS, P.—SÁRKÖZY, A.: Some solved and unsolved problems in combinatorial number theory, Math. Slovaca 28 (1978), 407–421.
  5. [5] GONG, K.: An elementary approach to character sums over multiplicative subgroups, Integers 16 (2016), #A13.
  6. [6] MATOUŠEK, J.—SPENCER, J.: Discrepancy in arithmetic progression, J. Amer. Math. Soc. 9 (1996), 195–204.10.1090/S0894-0347-96-00175-0
  7. [7] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences, I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365–377.10.4064/aa-82-4-365-377
  8. [8] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences, II. The Champernowne, Rudin–Shapiro, and Thue–Morse sequences, a further construction, J. Number Theory 73 (1998), 256–276.10.1006/jnth.1998.2286
  9. [9] MONTGOMERY, H. L.—VAUGHAN, R. C.: Mean values of character sums, Canad. J. Math. 31 (1979), no. 3, 470–487.10.4153/CJM-1979-053-2
  10. [10] PÓLYA, G.: Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger Nachrichten 1918, 21–29.
  11. [11] QUEFFÉLEC, M.: Substitution Dynamical Systems—Spectral Analysis. In: Lecture Notes in Math. Vol. 1294, Springer-Verlag, Berlin, 1987.10.1007/BFb0081890
  12. [12] ROTH, K. F.: Remark concerning integer sequences, Acta Arith. 9 (1964), 257–260.10.4064/aa-9-3-257-260
  13. [13] RUDIN, W.: Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855–859.10.1090/S0002-9939-1959-0116184-5
  14. [14] SÁRKÖZY, A.: Some remarks concerning irregularities of distribution of sequences of integers in arithmetic progressions, IV, Acta Math. Acad. Sci. Hungar. 30(1-2) (1977), 155–162.10.1007/BF01895660
  15. [15] SHAPIRO, H. S.: Extremal Problems for Polynomials and Power Series. Doctoral Thesis, M. I. T., Massachusetts Institute of Technology, ProQuest LLC, Ann Arbor, MI, 1953.
  16. [16] VINOGRADOV, A. I.: On the symmetry property for sums with Dirichlet characters, Izv. Akad. Nauk UZSR, Ser. Fiz.-Mat. Nauk 1965 (1965), no. 1, 21–27. (In Russian)
  17. [17] WINTERHOF, A.: Some Estimates for Character Sums and Applications, Designs, Codes and Cryptography 22 (2001), 123–131.10.1023/A:1008300619004
  18. [18] ZHAO, L.: Burgess bound for character sums, January 2007, http://www.researchgate.net/publication/237203641
DOI: https://doi.org/10.2478/udt-2018-0008 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 1 - 21
Submitted on: Dec 20, 2016
Accepted on: Nov 11, 2017
Published on: Jan 25, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Cécile Dartyge, Katalin Gyarmati, András Sárközy, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.