Have a personal or library account? Click to login
Geostatistical Spatial Decision-Making for Identifying Road Hazardous Road Segments in Rural Areas Cover

Geostatistical Spatial Decision-Making for Identifying Road Hazardous Road Segments in Rural Areas

Open Access
|Jun 2024

References

  1. ABED, J., and KAYSI, I. (2003) Identifying urban boundaries: application of remote sensing and geographic information system technologies, Canadian Journal of Civil Engineering, 30(6): pp 992–999, DOI: 10.1139/l03-051
  2. ALAM, M. S., and TABASSUM, N.J. (2023) Spatial pattern identification and crash severity analysis of road traffic crash hot spots in Ohio. Heliyon 9(5), e16303, https://doi.org/10.1016/j.heliyon.2023.e16303
  3. ANDERSON, T. K. (2009) Kernel density estimation and K-means clustering to profile road accident hotspots, Accident Analysis and Prevention, 41(3), pp 359–364, https://doi.org/10.1016/j.aap.2008.12.014
  4. ANSELIN, L. (1995) Local indicator of spatial association-LISA, Geographical Analysis, 27 (2), pp. 93–115, https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  5. BAILEY, T.C and GATRELL, A.C. (1995) Interactive Spatial Data Analysis, Longman: Harlow.
  6. BAUMONT, C., Ertur, C., Le Gallo, J. (2004) Spatial Analysis of Employment and Population Density: the Case of the Agglomeration of Dijon, 1999, Geographical Analysis, 36, pp 146–176, https://doi.org/10.1111/j.1538-4632.2004.tb01130.x
  7. BOOTH, A.J (2004) Fishery-Aquatic GIS Research Group, Spatial statistic and aquatic geographic information systems. In Proceedings of the Second International Symposium on GIS/Spatial Analysis in the Aquatic Sciences. Kawagoe-city, Japan, pp. 3 – 44.
  8. BOOTS, B. (2002) Local measures of spatial association, Écoscience, 9(2), pp 168–176, DOI: 10.1080/11956860.2002.11682703
  9. BRIJS, T., Van Den BOSSCHE, F., Karlis, D. (2006) A model for identifying and ranking dangerous accident locations: a case study in Flanders, Statistica Neerlandica, 60(4), pp 457–476, DOI: 10.1111/j.1467-9574.2006.00341.x
  10. CHENG, W., and WASHINGTON, S.P. (2005) Experimental evaluation of hotspot identification methods, Accident Analysis and Prevention, 37(5), pp 870–881, DOI: 10.1016/j.aap.2005.04.015
  11. COLAK, H.E., Tugba MEMISOGLU., Selcuk ERBAS, Y., Sevket BEDIROGLU. (2018) Hot spot analysis based on network spatial weights to deter mine spatial statistics of traffic accidents in Rize, Turkey. Arabian Journal of Geosciences, volume 11: article number 151, https://doi.org/10.1007/s12517-018-3492-8
  12. DRISS, M., BENABDELI, K., Saint-GÉRANT, T., HAMADOUCHE, M.A. (2014) Traffic safety prediction model for identifying spatial degrees of exposure to the risk of road accidents based on fuzzy logic approach. Geocarto international, 30(3), pp 243–257, DOI:10.1080/10106049.2014.883554.
  13. ERDOGAN, S. (2009) Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey, Journal of Safety Research, 40(5), pp 341–351, DOI: 10.1016/j.jsr.2009.07.006
  14. FAGBOHUN, B.J., and ALADEJANA, O.O. (2016) Integrating knowledge-based multi-criteria evaluation techniques with GIS for landfill site selection: A case study using AHP. Materials and Geoenvironment, pp 169 – 182, DOI: https://doi.org/10.1515/rmzmag-2016-0016
  15. FLAHAUT, B. (2004) Impact of infrastructure and local environment on road unsafety Logistic modeling with spatial autocorrelation, Accident Analysis and Prevention, 36(6), pp 1055–1066, DOI: 10.1016/j.aap.2003.12.003
  16. FLAHAUT, B., and THOMAS, I. (2002) Identifier les zones noires d’un réseau routier par l’autocorrélation spatiale locale : Analyses de sensibilité et aspects opérationnels, Revue internationale de géomatique, 12, pp 245–261, http://dx.doi.org/10.3166/rig.12.245-261
  17. FLAHAUT, B., MOUCHART, M., San MARTIN, E. (2003) The local spatial autocorrelation and the kernel method for identifying black zones: a comparative approach. Accident Analysis and Prevention, 35(6), pp. 991–1004. DOI: 10.1016/S0001-4575(02)00107-0
  18. Fotheringham, A.S., Brunsdon, C., Charlton, M. (2000) Quantitative geography: Perspectives on spatial data analysis. Sage Publications, Thousand Oaks, CA. 270 p.
  19. Getis, A., ALDSTADT, J. (2004) Constructing the spatial weights matrix using a local statistic, Geographical Analysis, 32(2), pp 90–104, DOI: 10.1007/978-3-642-01976-0_11
  20. Getis, A., ORD, J.K. (1996) Local spatial statistics: An overview, In spatial analysis: Modeling in a GIS environment. Edited by P. Longley and M. Batty (eds.). Jhon Wiley and Sons. New York, pp. 261–277.
  21. GUNDOGDU, I.B. (2011) A new approach for GIS-supported mapping of traffic accidents. In: Proceedings of the Institution of Civil Engineers, Transport, Stockholm, Sweden, 164(2), pp 87–96, doi:10.1680/tran.2011.164.2.87
  22. H. GE., L. DONG., M. HUANG., W. ZANG., L. ZHOU. (2022) Adaptive Kernel Density Estimation for Traffic Accidents Based on Improved Bandwidth Research on Black Spot Identification Model, Electronics, 11(21), 3604, DOI: 10.3390/electronics11213604
  23. HAIJIN, S., and LIANJUN, Z. (2003) Local Analysis of Tree Competition and Growth, Forest Science, 49(6), 938–955, https://doi.org/10.1093/forestscience/49.6.938
  24. HAYIDSO TEMESGEN Haile., Gemeda Dessalegn Obsi., Abraham Ashenif Melese. (2019) Identifying road traffic accidents hotspots areas using GIS in Ethiopia: A case study of hosanna town. Transport and Telecommunication, 20 (2), pp 123–132, DOI 10.2478/ttj-2019-0011
  25. HEBBAR, C., TIRES, H., HASSANI Maya, M. (2020) Road Risk and Road Safety in Algeria. Territorium 27 (I), pp133–144, DOI: https://doi.org/10.14195/1647-7723_27-1_10
  26. HIMMAN, S.E., BLACKBURN, J. k., JEFFERY CURTIS, A. (2006) Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906–1909: evaluating local clustering with the Gi* statistic, International Journal of Health Geographics, 5(1), 13, doi:10.1186/1476-072X-5-13
  27. KHAN, G., QIN, X., NOYCE, D.A. (2008) Spatial Analysis of Weather Crash Patterns. Journal of transportation engineering, 134(5), pp.191–202. DOI: 10.1061/(ASCE)0733-947X(2008)134:5(191)
  28. MENDAS, A., HAMDOUN, S., NECHNICHE, H. (2006) Identification et cartographie des concentrations spatiales des accidents de la route Application à la RN 11(Ouest algérien). Revue XYZ• N° 107 – 2e trimestre : pp. 35–40,
  29. MITCHELL, A. (2005) The ESRI Guide to GIS Analysis, Volume 2: Spatial measurements and statistics, ESRI Press, Redlands. 240p.
  30. MOONS, E., BRIJS, T., WETS, G. (2009) Improving Moran’s Index to Identify Hot Spots in Traffic Safety. Geocomputation and Urban Planning. In: Springer-Verlag Berlin Heidelberg,, SCI volume 176, pp117–132, doi: 10.1007/978-3-540-89930-3_7
  31. ONS – Office National des Statistiques (2020). Les immatriculations des véhicules automobiles, Rapport N°996[cited 31/12/2020]. Available on: https://www.ons.dz/IMG/pdf/i.parc_nat31_12_2020.pdf
  32. ORD, J.K., GETIS, A. (1995) Local Spatial Autocorrelation statistics: Distribution issues and an application, Geographical analysis, 27(4), pp. 286–306, https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
  33. OURAMDANE, N., Ifourah, H., Henchiri J.E. (2023) Road accidents in Algeria: a diagnosis to act better . Annales des sciences sociales et humaines de l’Université de Guelma. Volume:1 /N°34:, pp 335–355, http://dspace.univ-guelma.dz/jspui/handle/123456789/14337
  34. RYGUŁA A.., BRZOZOWSKI K.., MACZYNSKI Andrzej. (2023) A model for identifying road risk class, Transport and Telecommunication, 24(02), pp 167–179, DOI 10.2478/ttj-2023-0015
  35. SAVAS Durduran, S. (2010) A decision making system to automatic recognize of traffic accidents on the basis of a GIS platform, Expert Systems with Applications, 37 (12), pp. 7729–7736, DOI: 10.1016/j.eswa.2010.04.068
  36. STEENBERGHEN, T., AERTS, K., THOMAS, I. (2010) Spatial clustering of events on a network, Journal of Transport Geography, 18(3), pp 411–418, DOI: 10.1016/j.jtrangeo.2009.08.005
  37. THOMAS, I. (1996) Spatial data aggregation: Exploratory analysis of road accidents, Accident Analysis and Prevention, 28(2), pp 251–264, https://doi.org/10.1016/0001-4575(95)00067-4
  38. TORUN, A., and DÜZGÜN, S. (2006) Using spatial data mining techniques to reveal vulnerability of people and places due to oil transportation and accidents: a case study of Istanbul strait,” In: ISPRS Technical Commission II Symposium, Vienna, pp 43–48.
  39. TSAI, P.J., LIN, M.L., CHU, C.M., PERNG., C.H. (2009) Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006, BMC Publ Health, 9(1), article number 464, doi:10.1186/1471-2458-9-464
  40. WU, J., WANG, J., MENG, B., CHEN, G., PANG, L., SONG, X., ZHANG, K., ZHANG, T., ZHENG, X. (2004) Exploratory spatial data analysis for the identification of risk factors to birth defects, BMC Public Health, 4, article number 23, doi:10.1186/1471-2458-4-23
  41. WU, W.B., and MIELNICZUK, J. (2002) Kernel Density Estimation For Linear Processes, The Annals of statistics, 30(5), pp. 1441–1459, DOI: 10.1214/aos/1035844982
  42. ZANINETTI, J.M. (2007) Statistiques de produit croisé pour l’analyse spatiale exploratoire, Cybergeo: Revue européenne de géographie, doi :10.4000/cybergeo.11203
Language: English
Page range: 11 - 18
Published on: Jun 27, 2024
Published by: Univesity of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Miloud Driss, Mohamed Amine Hamadouche, Brahim Safi, Mohsen Mhadhbi, Mostefa Lallam, published by Univesity of Žilina
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.