Have a personal or library account? Click to login
Deviations in Traffic Flow Characteristics Caused by the Impact of the Covid-19 Pandemic Cover

Deviations in Traffic Flow Characteristics Caused by the Impact of the Covid-19 Pandemic

Open Access
|May 2023

References

  1. Aliari, S., Sadabadi, K. F. 2019. Automatic detection of major freeway congestion events using wireless traffic sensor data: machine learning approach. Transportation Research Record, 2673(7), pp. 436-442. Available: https://doi.org/10.1177/0361198119843859
  2. Ando, T., Sato, T., Hashimoto, N., Tran, Y., Konishi, N., Takeda, Y., Akamatsu, M. 2021. Variability in human mobility during the third wave of COVID-19 in japan. Sustainability (Basel, Switzerland), 13(23), pp. 13131. Available: https://doi.org/10.3390/su132313131
  3. Aparicio, J. T., Arsenio, E., Henriques, R. 2021. Understanding the impacts of the COVID-19 pandemic on public transportation travel patterns in the city of lisbon. Sustainability (Basel, Switzerland), 13(15), pp. 8342. Available: https://doi.org/10.3390/su13158342
  4. Cao, Y., Li, X. 2022. Multi-model attention fusion multilayer perceptron prediction method for subway OD passenger flow under COVID-19. Sustainability (Basel, Switzerland), 14(21), pp. 14420. Available: https://doi.org/10.3390/su142114420
  5. Cheshmehzangi, A., Sedrez, M., Ren, J., Kong, D., Shen, Y., Bao, S., Xu, J., Su, Z., Dawodu, A. 2021. The effect of mobility on the spread of COVID-19 in light of regional differences in the european union. Sustainability (Basel, Switzerland), 13(10), pp. 5395. Available: https://doi.org/10.3390/su13105395
  6. Docquier, F., Golenvaux, N., Nijssen, S., Schaus, P., Stips, F. 2022. Cross-border mobility responses to COVID-19 in europe: New evidence from facebook data. Globalization and Health, 18(1), pp. 41-41. Available: https://doi.org/10.1186/s12992-022-00832-6
  7. Faye, S., Chaudet, C. 2016. Characterizing the topology of an urban wireless sensor network for road traffic management. IEEE Transactions on Vehicular Technology, 65(7), 5720-5725. Available: https://doi.org/10.1109/TVT.2015.2465811
  8. Garunovic, N., Bogdanović, V., Davidović, S., Mirović, V., Mitrović Simić, J. 2021. Characteristics of traffic flows at roundabouts in the city of banja luka before and during COVID-19 crisis. Put i Saobraćaj, 67(4), pp. 31-35. Available: https://doi.org/10.31075/67.04.06
  9. Gupta, A., Katarya, R. 2023. Possibility of the COVID-19 third wave in india: Mapping from second wave to third wave. Indian Journal of Physics, 97(2), pp. 389-399. Available: https://doi.org/10.1007/s12648-022-02425-w
  10. Hrudkay, K., Bárta, D. 2022. Senzorové siete pre nastavenie regulácie dopravy miest zohľadňujúce klimatickú zmenu. /Sensor networks for setting urban traffic regulation taking into consideration climate change [electronic]/. In: Dopravná infraštruktúra v mestách [electronic]: zborník. - 1. vyd. - Žilina: Žilinská univerzita v Žiline. p. 1-10. ISBN 978-80-554-1904-6 (online).
  11. Hrudkay, K., Madleňáková, L., Čulík, K., Morgoš, J. 2022. City logistics the centre of the Slovak county town. In: 10th Carpathial Logistics Congress, Hotel Pod Zámkom, Bojnice, Slovakia, EU, June 15 - 17, pp. 147-153. Available: https://doi.org/10.37904/clc.2022.4552
  12. Huang, T., Chakraborty, P., Sharma, A., Hegde, C. 2021. Large-scale data-driven traffic sensor health monitoring. Journal of Big Data Analytics in Transportation, 3(3), pp. 229-245. Available: https://doi.org/10.1007/s42421-021-00049-w
  13. Jaekel, B., Muley, D. 2022. Transport impacts in germany and state of qatar: An assessment during the first wave of COVID-19. Transportation Research Interdisciplinary Perspectives, 13, pp. 100540-100540. Available: https://doi.org/10.1016/j.trip.2022.100540
  14. Jang, S. Y., Hussain-Alkhateeb, L., Rivera Ramirez, T., Al-Aghbari, A. A., Chackalackal, D. J., Cardenas-Sanchez, R., Carrillo, M. A., Oh, I., Alfonso-Sierra, E. A., Oechsner, P., Kibiwott Kirui, B., Anto, M., Diaz-Monsalve, S., Kroeger, A. 2021. Factors shaping the COVID-19 epidemic curve: a multi-country analysis. BMC infectious diseases, 21(1), 1-16. Available: https://doi.org/10.1186/s12879-021-06714-3
  15. Katrakazas, C., Michelaraki, E., Sekadakis, M., Yannis, G. 2020. A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety. Transportation Research Interdisciplinary Perspectives, 7, pp. 100186-100186. Available: https://doi.org/10.1016/j.trip.2020.100186
  16. Lee, H., Noh, E., Jeon, H., Nam, E. W. 2021. Association between traffic inflow and COVID-19 prevalence at the provincial level in south korea. International Journal of Infectious Diseases, 108, pp. 435-442. Available: https://doi.org/10.1016/j.ijid.2021.05.054
  17. Li, H., Lv, Z., Li, J., Xu, Z., Yue, W., Sun, H., Sheng, Z. 2022. Traffic flow forecasting in the COVID-19: A deep spatial-temporal model based on discrete wavelet transformation. ACM Transactions on Knowledge Discovery from Data, Available: https://doi.org/10.1145/3564753
  18. Liu, Z., Stern, R. 2021. Quantifying the traffic impacts of the COVID-19 shutdown. Journal of Transportation Engineering, Part A, 147(5), pp. 04021014. Available: https://doi.org/10.1061/JTEPBS.0000527
  19. Peng, Y., Jiang, Y., Lu, J., Zou, Y. 2018. Examining the effect of adverse weather on road transportation using weather and traffic sensors. PloS One, 13(10), pp. e0205409-e0205409. Available: https://doi.org/10.1371/journal.pone.0205409
  20. Prasse, B., Achterberg, M. A., Ma, L., Van Mieghem, P. F. A. 2020. Network-inference-based prediction of the COVID-19 epidemic outbreak in the chinese province hubei. Applied Network Science, 5(1), pp. 35-35. Available: https://doi.org/10.1007/s41109-020-00274-2
  21. Rasca, S., Markvica, K., Ivanschitz, B. P. 2021. Impacts of COVID-19 and pandemic control measures on public transport ridership in European urban areas–The cases of Vienna, Innsbruck, Oslo, and Agder. Transportation Research Interdisciplinary Perspectives, 10, pp. 100376. Available: https://doi.org/10.1016/j.trip.2021.100376
  22. Ravina, M., Esfandabadi, Z. S., Panepinto, D., Zanetti, M. 2021. Traffic-induced atmospheric pollution during the COVID-19 lockdown: Dispersion modeling based on traffic flow monitoring in Turin, Italy. Journal of Cleaner Production, 317, pp. 128425. Available: https://doi.org/10.1016/j.jclepro.2021.128425
  23. Rodríguez González, A. B., Wilby, M. R., Vinagre Díaz, J. J., Fernández Pozo, R. 2021. Characterization of COVID-19’s impact on mobility and short-term prediction of public transport demand in a mid-size city in spain. Sensors (Basel, Switzerland), 21(19), pp. 6574. Available: https://doi.org/10.3390/s21196574
  24. Rothengatter, W., Zhang, J., Hayashi, Y., Nosach, A., Wang, K., & Oum, T. H. 2021. Pandemic waves and the time after Covid-19–Consequences for the transport sector. Transport Policy, 110, pp. 225-237. Available: https://doi.org/10.1016/j.tranpol.2021.06.003
  25. Seong, H., Hyun, H. J., Yun, J. G., Noh, J. Y., Cheong, H. J., Kim, W. J., Song, J. Y. 2021. Comparison of the second and third waves of the COVID-19 pandemic in south korea: Importance of early public health intervention. International Journal of Infectious Diseases, 104, pp. 742-745. Available: https://doi.org/10.1016/j.ijid.2021.02.004
  26. Singh, A., Guo, T., Bush, T., Abreu, P., Leach, F. C. P., Stacey, B., Economides, G., Anderson, R., Cole, S., Thomas, G. N., Pope, F. D., & Bartington, S. E. 2022. Impacts of COVID-19 lockdown on traffic flow, active travel and gaseous pollutant concentrations; implications for future emissions control measures in oxford, UK. Sustainability (Basel, Switzerland), 14(23), pp. 16182. Available: https://doi.org/10.3390/su142316182
  27. Taghvaeeyan, S., Rajamani, R. 2014. Portable roadside sensors for vehicle counting, classification, and speed measurement. IEEE Transactions on Intelligent Transportation Systems, 15(1), pp. 73-83. Available: https://doi.org/10.1109/TITS.2013.2273876
  28. Tirachini, A., Cats, O. 2020. COVID-19 and public transportation: Current assessment, prospects, and research needs. Journal of Public Transportation, 22(1), pp. 1-21. https://doi.org/10.5038/2375-0901.22.1.1
  29. Treiber, M., Kesting, A. 2017. The intelligent driver model with stochasticity-new insights into traffic flow oscillations. Transportation research procedia, 23, pp. 174-187. Available: https://doi.org/10.1016/j.trb.2017.08.012
  30. Tsvetkova, A., Kulkov, I., Busquet, C., Kao, P., Kamargianni, M. 2022. Implications of COVID-19 pandemic on the governance of passenger mobility innovations in europe. Transportation Research Interdisciplinary Perspectives, 14, pp. 100581. Available: https://doi.org/10.1016/j.trip.2022.100581
  31. Zeng, J., Tang, J. 2023. Modeling dynamic traffic flow as visibility graphs: A network-scale prediction framework for lane-level traffic flow based on LPR data. IEEE Transactions on Intelligent Transportation Systems, pp. 1-16. Available: https://doi.org/10.1109/TITS.2022.3231959
  32. Zhang, X., Xu, Y., Shao, Y. 2022. Forecasting traffic flow with spatial–temporal convolutional graph attention networks. Neural Computing & Applications, 34(18), pp. 15457-15479. Available: https://doi.org/10.1007/s00521-022-07235-z
  33. Zhu, N., Liu, Y., Ma, S., He, Z. 2014. Mobile traffic sensor routing in dynamic transportation systems. IEEE Transactions on Intelligent Transportation Systems, 15(5), pp. 2273-2285. Available: https://doi.org/10.1109/TITS.2014.2314732
  34. Ye, P., Wen, D. 2017. Optimal traffic sensor location for origin-destination estimation using a compressed sensing framework. IEEE Transactions on Intelligent Transportation Systems, 18(7), pp. 1857-1866. Available: https://doi.org/10.1109/TITS.2016.2614828
Language: English
Page range: 26 - 29
Published on: May 24, 2023
Published by: Univesity of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Kristián Čulík, Vladimíra Čulíková, Lucia Švábová, Marek Ďurica, Alica Kalašová, published by Univesity of Žilina
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.