References
- Ainsalu, J., Arffman, V., Bellone, M., Ellner, M., Haapamäki, T., Haavisto, N., Josefson, E, Ismailogullari, A., Lee, B., Madland, O., Madžulis, R., Müür, J., Mäkinen, S., Nousiainen, V., Pilli-Sihvola, E., Rutanen, E., Sahala, S., Schønfeldt, B., Smolnicki, P.M, Soe, R.-M, Sääski, J., Szymańska, M., Vaskinn, I., Åman, M., (2018) State of the art of automated buses. Sustainability, 10(9), 3118. DOI: 10.3390/su10093118.
- Allouch, M., Ouni, F. (2020) Modeling the severity of road accidents at intersections. In: Proceedings of IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), Fez, December 2020. IEEE, 1-5. DOI: 10.1109/logistiqua49782.2020.9353914.
- Aradi, S. (2020) Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(2), 740-759. DOI: 10.1109/tits.2020.3024655.
- Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Dietmayer, K., Heide, F. (2020) Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, June 2020. IEEE, 11679-11689. DOI:10.1109/cvpr42600.2020.01170.
- Bucchiarone, A., Battisti, S., Marconi, A., Maldacea, R. (2020) Autonomous Shuttle-as-a-Service (ASaaS): Challenges, opportunities, and social implications. IEEE Transactions on Intelligent Transportation Systems, 99. DOI: 10.1109/TITS.2020.3025670.
- Ensafi, Y., Amin, S.H., Zhang, G., Shah, B. (2022) Time-series forecasting of seasonal items sales using machine learning – A comparative analysis. International Journal of Information Management Data Insights, 2(1), 100058. DOI: 10.1016/j.jjimei.2022.100058.
- Esterwood, C., Yang, X. J., Robert, L. P. (2021) Barriers to AV bus acceptance: A national survey and research agenda. International Journal of Human–Computer Interaction, 37(15), 1391-1403. DOI: 10.1080/10447318.2021.1886485.
- Flötteröd, Y.-P, Bieker-Walz, L, Olstam, J. (2021) Towards safe and efficient shared-space oriented DRT service: Some insights with real case study in Linköping. In: Proceedings of Intelligent Transport Systems World Congress, Hamburg, October 2021. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-18523.
- Ghasedi, M., Kasmaei, M.S., Bargegol, I. (2021) Prediction and analysis of the severity and number of suburban accidents using logit model, factor analysis and machine learning: A case study in a developing country. SN Applied Sciences, 3(1). DOI: 10.1007/s42452-020-04081-3.
- Goldhammer, M, Strigel, E, Meissner, D., Brunsmann, U., Doll, K., Dietmayer, K. (2012) Cooperative multi sensor network for traffic safety applications at intersections. In: Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, September 2012. IEEE, 1178-1183. DOI: 10.1109/ITSC.2012.6338672.
- Hetzel, M., Reichert, H., Doll K., Sick, B. (2021) Smart infrastructure: A research junction. In: Proceedings of IEEE International Smart Cities Conference (ISC2), Manchester, September 2021. IEEE, 1-4. DOI: 10.1109/ISC253183.2021.9562809.
- Inlodean C, Cordos N, Varga, B. (2017) Autonomous shuttle bus for public transportation : A review. Energies, 13, 2917. DOI: 10.3390/en13112917.
- Kar, P., Feng, Sh. (2023) Intelligent traffic prediction by combining weather and road traffic condition information: A deep learning-based approach. International Journal of Intelligent Transportation Systems Research, 21, 506–522. DOI: 10.1007/s13177-023-00362-4.
- Laapotti, S., Keskinen, E., Ansavuori, S.H. (2003) Comparison of young male and female drivers’ attitude and self-reported traffic behavior in Finland in 1978 and 2001. Journal of Safety Research, 34(5), 579-87. DOI: 10.1016/j.jsr.2003.05.007.
- Lee, D., Guldmann, J.-M., von Rabenau, B. (2023) Impact of driver’s age and gender, built environment, and road conditions on crash severity: A logit modeling approach. International Journal of Environmental Research and Public Health, 20(3), 2338. DOI: 10.3390/ijerph20032338.
- Liu, X.-K., Chen, S.-L., Huang, D.-L., Jiang, Z.-S., Jiang,Y.-T., Liang, L.-J., Qin, L.-L. (2022) The influence of personality and demographic characteristics on aggressive driving behaviors in Eastern Chinese drivers. Psychology Research and Behavior Management, 15, 193–212. DOI:10.2147/prbm. s323431.
- Raimond, T., Gan, L.M. (2016) Speeding driving behavior: Age and gender experimental analysis. MATEC Web of Conferences, 74(2), 000302016. DOI: 10.1051/matecconf/20167400030.
- Raiyn, J. (2017) Road traffic congestion management based on search allocation approach. Transport and Telecommunication, 18(1), 25-33. DOI:10.1515/ttj-2017-0003.
- Raiyn, J. (2022) Detection of road traffic anomalies based on computational data science. Discover Internet of Things, 2, 6. DOI: 10.1007/s43926-022-00025-y.
- Raiyn, J., Weidl, G., (2023) Naturalistic driving studies data analysis based on a convolutional neural network. In: Proceedings of the 9th International Conference on Vehicle Technology and Intelligent Transport Systems VEHITS, Prague, April 2023. SciTePress, 248-256. DOI: 10.5220/0011839600003479.
- Salonen, O.A, Haavisto, N. (2019) Towards autonomous transportation. Passengers’ experiences, perceptions and feelings in a driverless shuttle bus in Finland. Sustainability, 11(3), 588. DOI: 10.3390/su11030588.
- Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, R. (2020) Driver behavior detection and classification using deep convolutional neural networks. Expert Systems with Applications, 149(9),113240. DOI: 10.1016/j.eswa.2020.113240.
- Tsigdinos, S., Tzouras, P. G, Bakogiannis, E., Kepaptsoglou, K., Nikitas, A. (2022) The future urban road: A systematic literature review-enhanced Q-method study with experts. Transportation Research Part D: Transport and Environment, 102, 103158. DOI: 10.1016/j.trd.2021.103158.
- Valanarasu, J.M.J, Yasarla, R., Patel, V.M. (2022) TransWeather: Transformer-based restoration of images degraded by adverse weather conditions. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, June 2022. IEEE, 2343-2353. DOI: 10.1109/CVPR52688.2022.00239.
- Wang, J., Zhang, L., Lu, X., Li, K. (2013) Driver characteristics based on driver behavior. Encyclopedia of Sustainability Science and Technology, 3099-3108. DOI: 10.1007/978-1-4419-0851-3_785/.
- WEKA. (2023) WEKA Platform. https://www.cs.waikato.ac.nz/ml/weka/ (Accessed on 01.10.2023).