Have a personal or library account? Click to login
Enhancing Urban Livability: Exploring the Impact of on-Demand Shared CCAM Shuttle Buses on City Life Cover

Enhancing Urban Livability: Exploring the Impact of on-Demand Shared CCAM Shuttle Buses on City Life

By: Jamal Raiyn  
Open Access
|Jun 2025

References

  1. Ainsalu, J., Arffman, V., Bellone, M., Ellner, M., Haapamäki, T., Haavisto, N., Josefson, E, Ismailogullari, A., Lee, B., Madland, O., Madžulis, R., Müür, J., Mäkinen, S., Nousiainen, V., Pilli-Sihvola, E., Rutanen, E., Sahala, S., Schønfeldt, B., Smolnicki, P.M, Soe, R.-M, Sääski, J., Szymańska, M., Vaskinn, I., Åman, M., (2018) State of the art of automated buses. Sustainability, 10(9), 3118. DOI: 10.3390/su10093118.
  2. Allouch, M., Ouni, F. (2020) Modeling the severity of road accidents at intersections. In: Proceedings of IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), Fez, December 2020. IEEE, 1-5. DOI: 10.1109/logistiqua49782.2020.9353914.
  3. Aradi, S. (2020) Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(2), 740-759. DOI: 10.1109/tits.2020.3024655.
  4. Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Dietmayer, K., Heide, F. (2020) Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, June 2020. IEEE, 11679-11689. DOI:10.1109/cvpr42600.2020.01170.
  5. Bucchiarone, A., Battisti, S., Marconi, A., Maldacea, R. (2020) Autonomous Shuttle-as-a-Service (ASaaS): Challenges, opportunities, and social implications. IEEE Transactions on Intelligent Transportation Systems, 99. DOI: 10.1109/TITS.2020.3025670.
  6. Ensafi, Y., Amin, S.H., Zhang, G., Shah, B. (2022) Time-series forecasting of seasonal items sales using machine learning – A comparative analysis. International Journal of Information Management Data Insights, 2(1), 100058. DOI: 10.1016/j.jjimei.2022.100058.
  7. Esterwood, C., Yang, X. J., Robert, L. P. (2021) Barriers to AV bus acceptance: A national survey and research agenda. International Journal of Human–Computer Interaction, 37(15), 1391-1403. DOI: 10.1080/10447318.2021.1886485.
  8. Flötteröd, Y.-P, Bieker-Walz, L, Olstam, J. (2021) Towards safe and efficient shared-space oriented DRT service: Some insights with real case study in Linköping. In: Proceedings of Intelligent Transport Systems World Congress, Hamburg, October 2021. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-18523.
  9. Ghasedi, M., Kasmaei, M.S., Bargegol, I. (2021) Prediction and analysis of the severity and number of suburban accidents using logit model, factor analysis and machine learning: A case study in a developing country. SN Applied Sciences, 3(1). DOI: 10.1007/s42452-020-04081-3.
  10. Goldhammer, M, Strigel, E, Meissner, D., Brunsmann, U., Doll, K., Dietmayer, K. (2012) Cooperative multi sensor network for traffic safety applications at intersections. In: Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, September 2012. IEEE, 1178-1183. DOI: 10.1109/ITSC.2012.6338672.
  11. Hetzel, M., Reichert, H., Doll K., Sick, B. (2021) Smart infrastructure: A research junction. In: Proceedings of IEEE International Smart Cities Conference (ISC2), Manchester, September 2021. IEEE, 1-4. DOI: 10.1109/ISC253183.2021.9562809.
  12. Inlodean C, Cordos N, Varga, B. (2017) Autonomous shuttle bus for public transportation : A review. Energies, 13, 2917. DOI: 10.3390/en13112917.
  13. Kar, P., Feng, Sh. (2023) Intelligent traffic prediction by combining weather and road traffic condition information: A deep learning-based approach. International Journal of Intelligent Transportation Systems Research, 21, 506–522. DOI: 10.1007/s13177-023-00362-4.
  14. Laapotti, S., Keskinen, E., Ansavuori, S.H. (2003) Comparison of young male and female drivers’ attitude and self-reported traffic behavior in Finland in 1978 and 2001. Journal of Safety Research, 34(5), 579-87. DOI: 10.1016/j.jsr.2003.05.007.
  15. Lee, D., Guldmann, J.-M., von Rabenau, B. (2023) Impact of driver’s age and gender, built environment, and road conditions on crash severity: A logit modeling approach. International Journal of Environmental Research and Public Health, 20(3), 2338. DOI: 10.3390/ijerph20032338.
  16. Liu, X.-K., Chen, S.-L., Huang, D.-L., Jiang, Z.-S., Jiang,Y.-T., Liang, L.-J., Qin, L.-L. (2022) The influence of personality and demographic characteristics on aggressive driving behaviors in Eastern Chinese drivers. Psychology Research and Behavior Management, 15, 193–212. DOI:10.2147/prbm. s323431.
  17. Raimond, T., Gan, L.M. (2016) Speeding driving behavior: Age and gender experimental analysis. MATEC Web of Conferences, 74(2), 000302016. DOI: 10.1051/matecconf/20167400030.
  18. Raiyn, J. (2017) Road traffic congestion management based on search allocation approach. Transport and Telecommunication, 18(1), 25-33. DOI:10.1515/ttj-2017-0003.
  19. Raiyn, J. (2022) Detection of road traffic anomalies based on computational data science. Discover Internet of Things, 2, 6. DOI: 10.1007/s43926-022-00025-y.
  20. Raiyn, J., Weidl, G., (2023) Naturalistic driving studies data analysis based on a convolutional neural network. In: Proceedings of the 9th International Conference on Vehicle Technology and Intelligent Transport Systems VEHITS, Prague, April 2023. SciTePress, 248-256. DOI: 10.5220/0011839600003479.
  21. Salonen, O.A, Haavisto, N. (2019) Towards autonomous transportation. Passengers’ experiences, perceptions and feelings in a driverless shuttle bus in Finland. Sustainability, 11(3), 588. DOI: 10.3390/su11030588.
  22. Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, R. (2020) Driver behavior detection and classification using deep convolutional neural networks. Expert Systems with Applications, 149(9),113240. DOI: 10.1016/j.eswa.2020.113240.
  23. Tsigdinos, S., Tzouras, P. G, Bakogiannis, E., Kepaptsoglou, K., Nikitas, A. (2022) The future urban road: A systematic literature review-enhanced Q-method study with experts. Transportation Research Part D: Transport and Environment, 102, 103158. DOI: 10.1016/j.trd.2021.103158.
  24. Valanarasu, J.M.J, Yasarla, R., Patel, V.M. (2022) TransWeather: Transformer-based restoration of images degraded by adverse weather conditions. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, June 2022. IEEE, 2343-2353. DOI: 10.1109/CVPR52688.2022.00239.
  25. Wang, J., Zhang, L., Lu, X., Li, K. (2013) Driver characteristics based on driver behavior. Encyclopedia of Sustainability Science and Technology, 3099-3108. DOI: 10.1007/978-1-4419-0851-3_785/.
  26. WEKA. (2023) WEKA Platform. https://www.cs.waikato.ac.nz/ml/weka/ (Accessed on 01.10.2023).
DOI: https://doi.org/10.2478/ttj-2025-0017 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 223 - 236
Published on: Jun 16, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jamal Raiyn, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.